
Co-Designing Accelerators and SoC Interfaces
using gem5-Aladdin

Yakun Sophia Shao§ Sam (Likun) Xi Vijayalakshmi Srinivasan† Gu-Yeon Wei David Brooks
NVIDIA Research§ Harvard University IBM Research†

sshao@nvidia.com {samxi,guyeon,dbrooks}@eecs.harvard.edu viji@us.ibm.com

Abstract—Increasing demand for power-efficient, high-
performance computing has spurred a growing number and
diversity of hardware accelerators in mobile and server Systems
on Chip (SoCs). This paper makes the case that the co-design
of the accelerator microarchitecture with the system in which
it belongs is critical to balanced, efficient accelerator microar-
chitectures. We find that data movement and coherence man-
agement for accelerators are significant yet often unaccounted
components of total accelerator runtime, resulting in misleading
performance predictions and inefficient accelerator designs. To
explore the design space of accelerator-system co-design, we
develop gem5-Aladdin, an SoC simulator that captures dynamic
interactions between accelerators and the SoC platform, and
validate it to within 6% against real hardware. Our co-design
studies show that the optimal energy-delay-product (EDP) of
an accelerator microarchitecture can improve by up to 7.4×
when system-level effects are considered compared to optimizing
accelerators in isolation.

I. INTRODUCTION

In the era of diminishing returns from technology scaling,
hardware acceleration is widely used to gain performance,
power, and energy improvements [1]. Accelerators are now
an integral component in modern SoCs, powering a variety
of applications like video decoding, image processing, cryp-
tography, machine learning, and more [2], [3], [4], [5], [6].

Accelerators are often designed as standalone IP blocks
that communicate with the rest of the system using a Direct
Memory Access (DMA) interface. This modularity simplifies
IP design and integration with the rest of the system, leaving
tasks like data movement and coherency management to soft-
ware device drivers. As a result, the costs of these overheads
are hard to predict and accommodate for at accelerator design
time. Our detailed characterization of accelerator behavior
shows that the combination of just these two effects can
occupy over 40% of the total runtime. Hence, when it comes
to accelerator design, architects must take a holistic view of
how they interact in the overall system, rather than designing
them in isolation.

Fundamentally, all systems should be designed in a way
that balances the bandwidth of the memory interface with
the amount of compute throughput. An overly aggressive

This work was done while Y.S. Shao was a graduate student at Harvard
University.

design will have more computational units than the mem-
ory interface can supply, leading to wasted hardware and
additional leakage power. We identify three major system-
level considerations that strongly affect accelerator design:
local memory interface, cache coherency management, and
behavior under shared resource contention.

The typical local memory interface is DMA, a push-based
system that requires software to setup bulk transfers and
manage coherency. An alternative is to embed a hardware-
managed cache with the accelerator design, leading to a
fine-grained, pull-based memory system that loads data on-
demand and transparently handles coherency state. Despite
these conveniences, caches are rarely used in accelerators due
to hardware overheads leading to power and area penalties.
However, there has been growing interest from industry in
providing coherent accelerator cache interfaces [7], [8], [9]
for the ease of programmability. We investigate the system-
level considerations for both approaches to understand when
each is preferable.

Such studies require detailed simulation infrastructure for
heterogeneous accelerator-rich platforms like SoCs. There is
a wide selection of CPU simulators [10], [11], [12] and stan-
dalone accelerator simulators like Aladdin [13]. However,
existing SoC simulators are unable to model dynamic inter-
actions between accelerators and the memory system [14]. In
this paper, we introduce gem5-aladdin, which integrates the
gem5 system simulator with the Aladdin accelerator simula-
tor to enable simulation of SoCs with complex accelerator-
system interactions. We validate gem5-aladdin against the
Xilinx Zynq platform and achieve less than 6% error.

We demonstrate that co-designing accelerators with
system-level considerations has two major ramifications for
accelerator microarchitectures that are not yet fully un-
derstood in the literature. First, datapaths should be less
aggressively parallel, which results in more balanced designs
and improved energy efficiency compared to accelerators
designed in isolation. Second, the choice of local memory
interfaces is highly dependent on the dynamic memory
characteristics of the accelerated workload, the system ar-
chitecture, and the desired power/performance targets. We
show that accelerator-system co-design can improve energy-
delay-product by up to 7.4× and on average 2.2×.978-1-5090-3508-3/16/$31.00 c© 2016 IEEE

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
Latency (ms)

0

5

10

15

20

25

30

35

40
P
o
w

e
r

(m
W

)

Lanes: 16
Ports: 16

Isolated Optimal:

Co-designed Optimal:
Lanes: 4
Ports: 8

Isolated

Co-designed

Fig. 1: Design space exploration for stencil3d for both isolated
and co-designed cases.

II. MOTIVATION AND BACKGROUND

In this paper, we use the term “accelerator” to refer to
an application-specific hardware block. These accelerators
are comprised of multiple customized datapath lanes, and
customized local memories. Each lane is a chain of functional
units controlled by finite state machines. When the local
memory is comprised of scratchpads, each scratchpad can be
partitioned into smaller arrays to increase memory bandwidth
to the lanes. Such accelerators are representative of recent
academic proposals [3], [15], [16], [17], [18], [19], [20] and
commercial designs [21], [22], [23].

A. Co-design: A Motivating Example

To demonstrate the differences between isolated vs. co-
designed accelerators, we perform a design sweep explo-
ration for both scenarios on a 3D stencil kernel. We sweep
compute parallelism and scratchpad partitioning. Compute
parallelism is described by the number of datapath lanes.
Figure 1 shows these two design spaces.

We consider an accelerator designed in isolation to be one
that focuses design optimization on the computation phase.
This design space (blue circles) leans towards more parallel,
power-hungry designs, as exemplified by the isolated energy-
delay-product (EDP) optimal design point. But if we account
for effects like initial data movement, the design space
(green triangles) shifts dramatically towards the lower right,
preferring less parallel designs at lower power. If we take
the isolated EDP optimal design and then apply these system
effects, we find that it is quite different from the co-designed
EDP optimal point. Unaccounted data movement becomes a
significant part of total runtime, making aggressively parallel
datapaths unnecessary.

B. Typical CPU-Accelerator Communication

The existence of the difference between the two design
spaces is due to how CPUs and accelerators traditionally

0.0 0.2 0.4 0.6 0.8 1.0
Execution Time (ms)

DMA Store to DRAM

Accelerator Compute

DMA Load from DRAM

CPU Dcache Invalidate

CPU Dcache Flush

(a) md-knn execution time on the Zynq platform

ae
s-a

es

nw-n
w

so
rt-

ra
dix

vit
er

bi-v
ite

rb
i

km
p-k

m
p

gem
m

-n
cu

bed

so
rt-

m
er

ge

gem
m

-b
loc

ke
d

m
d-g

rid

fft
-tr

an
sp

os
e

fft
-st

rid
ed

st
en

cil
-st

en
cil

2d

st
en

cil
-st

en
cil

3d

m
d-k

nn

sp
m

v-
cr

s

sp
m

v-
ell

pac
k

bfs-
queu

e

bfs-
bulk

Ave
ra

ge
0.0

0.2

0.4

0.6

0.8

1.0

E
x
e
cu

ti
o
n
 t

im
e

Accel. Compute

DMA Transfer

CPU Flush

(b) Breakdown of flush, DMA, and compute time in MachSuite for 16-way
parallel designs.

Fig. 2: Data movement overheads on MachSuite.

communicate data. In this typical flow, DMA is the transfer
mechanism, but typical DMA implementations can only
access main memory or LLC, so the CPU first flushes all
input data from private caches and invalidates the region
used to store return data [24]. Then it programs a DMA
transaction into the DMA engine and initiates the transfer.
The accelerator begins execution after receiving all the data
and streams its output data via DMA back to main memory
when it is done. The CPU, having invalidated that memory
region from its caches, can now access the return data
correctly.

For many benchmarks, this flow works quite well. DMA
is quite efficient at copying large blocks of data, and accel-
erators whose compute-to-memory ratios are large are well
served by DMA. However, for other workloads with more
irregular memory access patterns, this flow can impose severe
overheads, because the accelerator must wait to receive all
the data before it can begin computation. As an example,
Figure 2a shows the execution timeline for a 16-lane imple-
mentation of an md-knn accelerator (a k-nearest-neighbor
molecular dynamics), running on a Xilinx Zynq platform.
As shown, the accelerator’s computation only occupies about
25% of the total cycles, with the rest of the time spent
on preparing and moving data. We expanded this study in
simulation for all the MachSuite benchmarks [25] and find
that about half of them are compute-bound and the other half
data-movement-bound, as shown in Figure 2b.

L2 Cache

CPU0

L1 Cache

System bus

MC

DRAMDRAM La
n

e
0

La
n

e
1

La
n

e
2

La
n

e
3

BUF0 BUF1

ARR0 ARR1 ARR2 ARR3

STR0 STR1

La
n

e
4

La
n

e
5

La
n

e
6

La
n

e
7

SPAD/DMA interfaceACCEL1

MEM

CPU1

L1 Cache

Scratchpad accelerator

DMA

Transfer descriptors

CHAN 0

CHAN 3

 SRC ADDR
DEST ADDR

LENGTH

SRC ADDR
DEST ADDR

LENGTH

SRC ADDR
DEST ADDR

LENGTH

SRC ADDR
DEST ADDR

LENGTH

Channel selection

ACCEL0

MEM

La
n

e
0

La
n

e
1

La
n

e
2

La
n

e
3

L1
Cache

TLB

Cache controller

Cache accelerator

Design Parameter Values

Datapath lanes 1, 2, 4, 8, 16

Scratchpad partitioning 1, 2, 4, 8, 16

Data transfer mechanism DMA/cache

Pipelined DMA Enable/disable

DMA-triggered compute Enable/disable

Cache size 2, 4, 8, 16, 32, 64 (KB)

Cache line size 16, 32, 64 (B)

Cache ports 1, 2, 4, 8

Cache associativity 4, 8

Cache line flush 84 ns/line

Cache line invalidate 71 ns/line

Hardware prefetchers Strided

MSHRs 16

Accelerator TLB size 8

TLB miss latency 200 ns

System bus width 32, 64 (b)

Fig. 3: An example SoC that can be modeled using gem5-Aladdin. The table on the right shows the set of design parameters that we
swept in this work and their values; this is just a small subset of what can be configured.

Clearly, DMA is not an optimal solution for some work-
loads. One alternative, as mentioned earlier, is to replace
push-based DMA with pull-based hardware-managed caches.
In recent years, the scope of workloads that we desire to
accelerate has widened from dense computational kernels to
more irregular applications which could benefit from a less
rigid memory system. Although caches have seldom been
used for accelerators, the increased workload diversity mo-
tivates a more comprehensive study of new CPU-accelerator
communication strategies.

III. MODELING INFRASTRUCTURE

Figure 3 shows an example of an SoC, including general-
purpose cores, memory controllers, a DMA engine, and
different types of fixed-function accelerators, all of which
are connected through the system bus. In order to understand
how system-level effects impact the behavior of accelerators,
we need simulation infrastructures that can model these
heterogeneous systems. In this work, we integrate Aladdin
with the gem5 system simulator [10], a widely-used system
simulator with configurable CPUs and memory systems.

gem5-aladdin models interactions between accelerators
and CPUs, DMA, hardware-managed caches, and virtual
memory. All of these features have implications on how
the accelerator behaves and in the following sections, we
describe how each is modeled.

A. Overview

For the experiments in this paper, we run gem5-aladdin
in syscall emulation mode because it is sufficient to capture

the effects of our system-level considerations on performance
and power. Full-system simulation would enable us to model
operating system effects, but most are beyond the scope
of this study. Some interactions with the operating system,
such as device driver to hardware interactions, are charac-
terized through real hardware measurements and analytically
included in our models. Finally, syscall emulation is much
faster than full system simulation, easing rapid design space
exploration.

B. Accelerator Modeling
The Aladdin accelerator simulator [13] takes a first step

towards modeling the power, performance, and cycle-level
activity of standalone, fixed-function accelerators without
needing to generate RTL. Aladdin is a trace-based accelerator
simulator that profiles the dynamic execution of a program
and constructs a dynamic data dependence graph (DDDG) as
a dataflow representation of an accelerator. The vertices in the
DDDG are LLVM IR instructions, and the edges represent
true dependences between operations. Aladdin then applies
common accelerator design optimizations and schedules the
graph for execution through a breadth-first traversal, while
accounting for user-defined hardware constraints. Aladdin
was validated to be within 7% accuracy compared to stan-
dalone, RTL accelerator designs.

However, Aladdin only focuses on the standalone datapath
and local memories. It assumes that all data has been pre-
loaded into the local scratchpads. This skips the modeling
of any interactions between accelerators and the rest of the
system in which they belong.

C. DMA Engine

DMA is a software managed mechanism for transferring
bulk data without CPU intervention. To set up a transaction,
the programmer constructs a DMA transfer descriptor that
contains the source and destination memory addresses along
with the size of the transfer. Multiple descriptors can be
constructed and connected through a linked list. When all
descriptors are ready, the programmer initiates the transfer
by writing the address of the head of the descriptor linked
list into a hardware DMA engine’s control register. The DMA
engine then fetches and services these descriptors one by one.
Meanwhile, the CPU is free to perform other work.

In gem5-Aladdin, accelerators can invoke the DMA engine
already present in gem5. To do so, a programmer inserts calls
to special dmaLoad and dmaStore inside the accelerated
function with the appropriate source, destination, and size
arguments. When the function is traced by Aladdin, Aladdin
will identify these calls as DMA operations and issue the
request to the gem5 DMA engine. As part of the DMA
engine, we include an analytical model to account for cache
flush and invalidation latency, using the measured numbers
mentioned in Section IV-B1.

D. Caches and Virtual Memory

For the accelerator caches, we use gem5’s classic cache
model along with a basic MOESI cache coherence protocol.
When Aladdin sees a memory access that is mapped to
a cache, it sends a request through a cache port to its
local cache. Aladdin will receive a callback from the cache
hierarchy when the request is completed. To support virtual
memory, we implement a special Aladdin TLB model. We do
not use gem5’s existing TLB models for two reasons. First,
the existing TLB models are tied to particular ISAs, which
do not pertain to accelerators [26]. Second, as a trace-driven
simulator, the trace address that Aladdin originally uses does
not directly map to the simulated address space that CPU is
accessing. To maintain correct memory access behavior, our
custom TLB model translates the trace address to a simulated
virtual memory address and then to a simulated physical
address. TLB misses and page table walks are modeled with
a pre-characterized miss penalty.

E. CPU-Accelerator Interface

On the CPU, a simulated user program can invoke an
attached accelerator through the ioctl system call, a system
call widely used in practice for arbitrary communication with
devices. In the ioctl emulation code, we assign a special
file descriptor value for Aladdin and use command numbers
to refer to individual accelerators. When the accelerator
finishes, it writes to a shared pointer between the CPU and
the accelerator. The CPU will see the update due to cache
coherence. After invoking the accelerator, the CPU can either
spin wait for the status to update or continue to do other

ae
s-
ae

s

fft
-tr

an
sp

os
e

ge
m

m
-n

cu
be

d

m
d-

kn
n

nw
-n

w

sp
m

v-
cr

s

st
en

ci
l-s

te
nc

il2
d

st
en

ci
l-s

te
nc

il3
d

Ave
ra

ge
0
2
4
6
8

10
12
14
16

E
rr

o
r

(%
)

Flush + Invalidate DMA Accel

Fig. 4: Error between Zedboard and gem5-Aladdin cycles.

work, periodically checking the status variable to see if the
accelerator is completed.

Sharing virtual memory between CPUs and accelerators
means that any mismatches in memory consistency models
must be resolved. In our experiments, we handle this by
strictly limiting pages of memory that the accelerator may
access and enforcing mutual exclusion on these pages. For
our simple synchronization primitive, the accelerator issues
an mfence before signaling to the CPU that it is finished
through the shared pointer.

F. Performance Validation

We have validated gem5-Aladdin’s performance models
using the Zynq Zedboard for a subset of the MachSuite
benchmark suite. For each benchmark, we implement the
AXI4-Stream interface to transfer data via Xilinx’s DMA
IP blocks. Accelerator RTL is generated using Vivado HLS
2015.1. To maintain a consistent view of the model, we use
HLS without specifying any additional design optimizations,
so Vivado HLS generates a default design whose parameters
we then match in Aladdin.

The complete system (including the DMA engine, accel-
erators, crossbars, etc.) is implemented in in Vivado Design
Suite 2015.1. Software running on the CPU first initializes all
devices in the system and generates the accelerator input data.
Then it performs the necessary cache flushes and invalidates
and starts the DMA transfer. The accelerator automatically
begins computation when the DMA transfer is complete.

To measure performance, we instrument this code using
cycle counters on the A9 CPUs. Because we cannot directly
measure the DMA transfer time, we include logic analyzers
in the synthesized system to capture waveforms using Xilinx
tools during execution. Most benchmarks were implemented
on a 10ns clock; a few used slower clocks for timing reasons.

The results of our validation are shown in Figure 4.
Our DMA performance model achieves 6.4% average error
across this suite of benchmarks, while Aladdin achieves 5%
average error, and the flush and invalidation analytical model

achieves 5% average error. These results demonstrate the
ability of gem5-Aladdin to model a wide range of accelerator
workloads accurately for both the accelerated kernels and
important system-level considerations.

1) Validation omissions: Our validation focuses on the
features required by our DMA techniques: cache flushes and
invalidates, DMA transfer time, and accelerator runtime. In
general, we validated as much of the new additions as we
could. Below are the components this work does not validate
and our reasons for omitting them.

• CPU performance models: Existing work by Gutierrez
et al. has already produced an accurate gem5 CPU
model for the ARM A9 core[27], and gem5-Aladdin
uses that validated model.

• Power model: All power results represent only the
accelerator power. We do not account for CPU power in
any of our results. We use the same validated Aladdin’s
power models with TSMC 40nm technology.

• Cache: To the best of our knowledge, there is no existing
IP block available on Zynq such that we could imple-
ment a cache controller on the programmable fabric.
Furthermore, we never modified gem5’s cache models.

IV. MEMORY SYSTEM OPPORTUNITIES

In this section, we will discuss the primary design con-
siderations when deciding whether to use a DMA- or cache-
based memory system for an accelerator. Because baseline
DMA leaves much room for improvement, we will also apply
two optimizations to DMA. We will then describe design
considerations specific to cache-based accelerators. Finally,
we will evaluate the performance of both memory systems
for a set of representative benchmarks.

A. Primary design considerations
First, we compare and contrast DMA and caches across the

three system-level considerations mentioned earlier: push vs.
pull, data movement granularity, management of coherency,
and behavior under shared resource contention.

Push vs. Pull: DMA is designed for efficient bulk
data transfer where the data requirements of the program
are well known a priori. This works well for streaming
applications and applications with high compute-to-memory
ratios. However, applications with more irregular memory
access patterns, such as indirect memory accesses, can suffer
without an on-demand memory system like a cache. In
addition, because caches have the feature of automatic cache
line replacement, a cache can often afford to be smaller than
a scratchpad that must hold all the data.

Data Movement Granularity: Because DMA is software
controlled, the overheads of setting up a transaction are usu-
ally amortized over a large bulk transfer. In contrast, caches
pull in data at cache line granularity, enabling fine-grained
overlap between compute and data movement. Although fine-
grained DMA is possible, each new transactions adds addi-
tional overheads. On the other hand, caches must perform tag

comparisons, replacements, and address translations, which
make them inefficient for bulk data movement.

Cache Coherence Management: DMA engines typically
can only access main memory or last level cache. There-
fore, the programmer must conservatively flush any data
the accelerator may read out of private caches. Figure 2b
shows that on average, accelerators employing traditional
DMA spend 20% of their total cycles on cache flushes.
The flush is typically performed by software because DMA
engines rarely participate in coherency (although there have
been exceptions, like IBM Cell [28]). In contrast, hardware-
managed caches handle all of this complexity transparently
at the cost of additional hardware.

Shared Resource Contention: In a real scenario where
resources like the main system interconnect and main mem-
ory are shared across multiple agents, invariably a DMA
operation or cache fill will stall to allow another process
to make progress. A coarse-grained mechanism like DMA
will be affected much more by shared resource contention
because the accelerator usually waits for the entire transfer
to complete. In comparison, fine-grained memory accesses
like cache fills are less likely to contend due to their smaller
size, and hit-under-miss allows other independent operations
to proceed even while an earlier cache load or store missed.

B. DMA Optimizations

In this section, we improve the baseline DMA method by
overlapping various stages of the process. We will examine
two DMA latency optimizations: pipelined DMA and DMA-
triggered computation, which are depicted in Figure 5.

1) Pipelined DMA: Pipelined DMA reduces latency by
dividing the flush and DMA operations into page sized blocks
and overlapping the DMA of block b with the flush of
block b + 1. We choose page size granularity to optimize
for DRAM row buffer hits. In the best case, we can hide all
but 4KB of the flush latency. Note that the correctness of
this optimization is ensured by never starting a DMA block
before its flush has completed.

Cache line flush latency varies across ISAs and implemen-
tations. For example, we characterized the flush throughput
on the Zedboard’s Cortex A9 CPU to be one cache line per 56
cycles at 667MHz. To achieve optimal pipelining and avoid
bubbles, we want to match the flush and DMA latencies of a
4KB transaction. On the Zedboard, this is achieved with an
accelerator clock frequency of 100MHz, which is why we
use this frequency for the rest of our experiments.

Breaking up a large flush and DMA operation introduces
additional overheads. The DMA engine must fetch new
metadata from main memory for every block, and the CPU
must synchronize flushes with dependent DMA operations.
For this, we add a fixed 40 cycle delay to every DMA
transaction, also based on characterization. At 100MHz, this
accounts for metadata reads (4 cycles), the one-way latency

i = 16
to 31

A[32:

A[48:63

FLUSH DMA A[0:N] i = 0 N

i = 0 N

15]

A[0:15]

A[16:31]

i = 0
to 15

Begin DMA of A as soon as the first flush chunk completes.

Baseline

+ Pipelined
DMA

Break up flush and DMA into page sized chunks

i = 0 N

+ DMA-triggered
compute

Begin loop iteration 0 as soon as A[0] arrives.

A[32:47]

A[16:31]

Ready bits track data at granularity G
(for illustration purposes G = 16)

Copy array
via DMA

Flush array from
CPU caches

Compute loop
iteration i

Fig. 5: A demonstration of the DMA latency reduction techniques.

of initiating DMA from the CPU (17 cycles), and additional
CPU cycles spent on housekeeping actions.

2) DMA-Triggered Computation: Even with pipelined
DMA, the accelerator still must wait for the entire DMA
transaction to finish before it can start. To overcome this,
we augment our accelerators with full/empty-bits, which are
often used in producer-consumer situations to indicate that
data is ready [29]. In our designs, we track data at cache
line granularity to be consistent with the preceding flush
operations (which operate on cache lines). Full/empty bits
are stored in a separate SRAM structure and indexed by a
slice of the load address. With full/empty bits, the accelerator
immediately begins computation without waiting for DMA
to complete until it reaches a load. A load accesses both
the full/empty bit arrays and the data arrays in parallel and
returns the data if the full/empty bit is 1. If not, the control
logic stalls the datapath until the DMA engine eventually
fills that data and sets the full/empty bit. Note that double-
buffering could be implemented in this scheme by tracking
the granularity of data transfer at half the array size instead
of cache line size, without any manual intervention. If an
accelerator has multiple datapath lanes, other lanes are free
to proceed even while some are blocked.

C. DMA Evaluation

To quantify the performance improvements from each
of the techniques described, we start from the baseline
design and cumulatively apply our DMA optimizations. From
execution traces, we break down the runtime into four parts
based on how cycles are spent: flush-only time, DMA/flush
time, compute/DMA time, and compute-only time. Flush-
only and compute-only are self-explanatory; compute/DMA
time includes all cycles when compute and DMA are over-
lapped, while DMA/flush includes all cycles when DMA and
flush but not compute are running.

Increasing the parallelism of accelerator datapaths through
additional datapath lanes and memory partitioning is a widely

used and effective way to achieve higher performance at the
cost of greater area and power. However, the presence of
memory movement imposes an upper bound on achieveable
speedup, and our DMA optimizations will affect realized
speedup as well. To understand how parallel an accelerator
must be in order to approach this upper bound, we take all
the optimizations, sweep the parallelism of the accelerator
datapath, and analyze the speedups realized.

1) Performance gains from DMA optimizations: The per-
formance improvements from each optimization are shown
in 6a. For brevity, we only present a subset of benchmarks
whose DMA times spans the range shown in Figure 2b. We
fix the parallelism of all accelerators to four datapath lanes.

We immediately observe that in the baseline design, flush-
only time is a significant fraction of the total execution
time. Pipelined DMA is thus shown to be very effective,
almost completely eliminating flush-only time for all the
benchmarks shown. This is because the benefits of pipelined
DMA are only dependent on the amount of data transferred
and not on the memory characteristics of the application.

DMA-triggered computation is able to improve perfor-
mance even more, but its effectiveness clearly varies across
workloads. It is most effective when a benchmark exhibits
some level of streaming behavior. For example, stencil2d
uses a 3x3 kernel and thus only requires the first three rows
of the input matrix to arrive before it can start computation,
so ready bits recover a significant amount of performance.
A similar logic applies to md-knn – in fact, ready bits
are so effective here that with just four datapath lanes, we
achieve 99% compute/DMA overlap. This is in contrast to
fft-transpose, where each unit of work requires eight
loads strided across the entire input arrays. This is not a
streaming memory access pattern and so DMA-triggered
compute is ineffective.

2) Impact of parallelism on DMA optimizations: The
results of sweeping accelerator parallelism, while applying
all the DMA optimizations, is shown in Figure 6b. This figure
demonstrates two points.

First, on several workloads, if there is enough parallelism,
the entire computation can be overlapped with DMA. This
means that without reducing flush or DMA time, no more
speedup is achievable. Benchmarks without this property
either have very little data to transfer to begin with (aes) or
are so serial that they don’t benefit from data parallelism in
the first place (nw).

Second, increased parallelism has no effect on the amount
of compute-DMA overlap. This is due to the serial data
arrival effect: no matter how parallel a datapath is, DMA
will always copy data sequentially starting with the first byte,
and until that critical first byte of data arrives, no compute
can start. As our DMA engine already fully utilizes the
available bus bandwidth, this data cannot arrive any faster,
and therefore compute also cannot be overlapped any more.

In conclusion, these sweeps show that memory movement,

ae
s-a

es

nw-n
w

gem
m

-n
cu

bed

fft
-tr

an
sp

os
e

st
en

cil
-st

en
cil

2d

st
en

cil
-st

en
cil

3d

m
d-k

nn

sp
m

v-
cr

s
0.0

0.2

0.4

0.6

0.8

1.0

E
x
e
cu

ti
o
n
 t

im
e

Baseline

Pipelined DMA

DMA-triggered compute

Flush-only

DMA/flush

Compute/DMA

Compute-only

(a) Performance improvements from each technique.

ae
s-a

es

nw-n
w

gem
m

-n
cu

bed

fft
-tr

an
sp

os
e

st
en

cil
-st

en
cil

2d

st
en

cil
-st

en
cil

3d

m
d-k

nn

sp
m

v-
cr

s
0.0

0.2

0.4

0.6

0.8

1.0

E
x
e
cu

ti
o
n
 t

im
e

1

2

4

8

16

Lanes:

Flush-only

DMA/flush

Compute/DMA

Compute-only

(b) Effect of parallelism on performance gains.

Fig. 6: Cumulatively applying each technique reduces the additional cycles spent on DMA, with some benchmarks seeing more benefit than
others. After applying all techniques, increasing parallelism through loop unrolling reduces compute cycles until near-complete overlap
is achieved, causing performance to saturate.

not compute, has become a significant bottleneck, and only
accelerating computation will quickly bring diminishing re-
turns. In fact, Figure 6b shows that for many benchmarks,
we can achieve the upper bound performance with relatively
fewer datapath lanes. As a result, to continue to get better
performance, we must somehow further overlap computa-
tion with data by overcoming the serial data arrival effect,
motivating the study of fine-grained, on-demand memory
systems.

D. Cache-Based Accelerators

In a cache-based accelerator, one of the most important
questions is how to handle variable latency memory accesses
in a statically scheduled datapath. The simplest way is to
stall the entire datapath until the miss resolves, but this sig-
nificantly hurts performance. Techniques like multithreaded
accelerators have been proposed in the CAD community
to hide cache miss latency [30], [31], but these require
additional resources to store thread contexts.

We choose a simpler cache miss handling scheme. Accel-
erators are typically designed with multiple parallel lanes.
When a cache miss happens in one of the lanes, only that
lane is stalled until the miss resolves. Other lanes are free to
continue. We include MSHRs to enable hit-under-miss and
multiple outstanding misses. Any lane with a dependence
on a result from a blocked lane is also blocked via control
logic mechanisms. This scheme lets independent computation
proceed while waiting for the missed data to be returned
without requiring storage for thread contexts. When lanes

are finished executing, they must wait and synchronize with
all other lanes before the next iteration can begin.

Another important design choice is what data is cached.
In our experiments, only data that must be eventually shared
with the rest of the system is sent through the cache, and
local scratchpads are used for private intermediate data. For
example, nw uses an internal score matrix to align DNA
sequences. This matrix is kept in local scratchpads.

E. Cache Evaluation

In this section, we will analyze the impact of datapath
parallelism on cache-based accelerator performance. We de-
compose total execution time into processing time, latency
time, and memory bandwidth time, using a similar technique
as Burger et al. [32]. Each component is the additional
execution time after applying a realistic constraint to a
memory system parameter. To briefly summarize:

1) Processing time: assume memory accesses are single-
cycle and always hit.

2) Latency time: allow memory accesses to miss in the
cache, but the system bus has unlimited bandwidth to
service cache fills.

3) Bandwidth time: constrain the system bus width to 32
bits, thus limiting the rate at which cache fill requests
can be serviced.

1) Impact of Datapath Parallelism: Figure 7 shows how
the performance of cache-based accelerators scales with dat-
apath parallelism. In this set of experiments, we first sweep
cache sizes to find the smallest cache at which performance
saturates for each benchmark. This is labeled at the top

ae
s-a

es

nw-n
w

gem
m

-n
cu

bed

fft
-tr

an
sp

os
e

st
en

cil
-st

en
cil

2d

st
en

cil
-st

en
cil

3d

m
d-k

nn

sp
m

v-
cr

s
0.0

0.2

0.4

0.6

0.8

1.0

N
o
rm

a
liz

e
d
 E

x
e
cu

ti
o
n
 T

im
e

512B 2 KB 32 KB 8 KB 8 KB 64 KB 16 KB 16 KB

Lanes: 1

2

4

8

16

32

Bandwidth

Latency

Processing

Fig. 7: Effect of datapath parallelism on cache-based accelerator
performance.

of each group of bars. The datapath parallelism sweep is
performed with this cache size per benchmark.

Naturally, we observe that processing time decreases with
increased parallelism, as expected. However, parallelism also
improves latency time, which is in contrast to the DMA
experiments where parallelism did not affect flush or DMA
time. This is because caches are a fine-grained pull-based
memory system, and increased datapath parallelism also
increases memory-level parallelism (more memory accesses
per cycle). Furthermore, the fine granularity more effectively
masks cache miss latency with computation, thereby decreas-
ing latency time.

On the other hand, more parallelism does not improve
bandwidth time due to increased memory bandwidth pres-
sure. In fact, bandwidth time becomes a larger fraction of
total execution time as we go to increasingly parallel designs.
For example, the performance of spmv-crs and md-knn
is eventually bottlenecked by bandwidth, even though the
increased memory level parallelism improves both processing
and latency time. Accelerators that are designed without
consideration of the available memory bandwidth in the SoC
are likely to be over-designed, provisioning more functional
units than can be fed with data by the system.

V. ACCELERATOR DESIGN CHOICES

Thus far, we have discussed in detail how the performance
of accelerated workloads changes when connected to two dif-
ferent memory systems, scratchpad with DMA and hardware-
managed caches. However, it has been unclear when to select
one over the other. Performance is not the only goal as well;
accelerator designers especially must balance performance
targets against power and energy constraints. It is also unclear
how differently one must think about designing accelerators

when system-level effects like data movement and its mech-
anisms are considered. In this section, we will shed light on
the DMA vs. cache question as well as illustrate that without
consideration for data movement, accelerator designers are
highly to overprovision and underutilize their accelerators.

A. DMA vs. Caches

One of the earliest decisions a designer needs to make is
decide whether private scratchpads with DMA or hardware-
managed caches is a better fit for the application at hand.
In this experiment, we performed a comprehensive design
space sweep for all the parameters listed in Figure 3 for all
of the MachSuite benchmarks. We show the resulting Pareto
optimal design curves, distinguished by memory system type,
in Figure 8. For brevity, we only show eight benchmarks that
span the range of design space characteristics observed. The
energy-delay-product (EDP) optimal design point for each
memory system is labeled with a star of the corresponding
color. All DMA design points apply all the optimizations
discussed in Section IV-B.

This experiment shows that some benchmarks umambigu-
ously prefer scratchpads with DMA (on the left), some
clearly are better with caches (on the right), and several
work equally well with either (in the middle). We will briefly
discuss each benchmark’s behavior in turn.

aes-aes and nw-nw:
These two benchmarks always both perform better and use

less power with DMA than with caches. They have have very
regular access patterns, and importantly, they only require a
small amount of data before computation can be triggered. In
contrast, a cache-based memory system will first experience
a TLB miss followed by cache misses, causing significant
performance slowdown.

gemm-ncubed:
This benchmark, unlike the previous two, is actually able

to match its DMA counterpart in performance. However,
due to the various overheads of caches (tag lookups, TLB
lookups, etc.), more power must be expended to reach this
performance.

stencil-stencil2d:
Although DMA can always outperform the cache system

on this benchmark, a cache-based design can actually achieve
same performance with lower power. This is because the
cache system can capture enough locality to use a smaller
cache, whereas the scratchpad design must fit the entire data
set into local memory.

stencil-stencil3d:
The 3D stencil kernel distinguishes itself from its 2D

counterpart because the cache system can outperform the
optimized DMA system at the cost of additional power. This

0.00 0.02 0.04 0.06 0.08
Latency (ms)

0.0

0.5

1.0

1.5

2.0

P
o
w

e
r

(m
W

)

aes-aes

DMA

Cache

0.0 0.1 0.2 0.3 0.4
Latency (ms)

0

10

20

30

40

P
o
w

e
r

(m
W

)

nw-nw

DMA

Cache

0 2 4 6
Latency (ms)

0

20

40

60

80

100

P
o
w

e
r

(m
W

)

gemm-ncubed

DMA

Cache

0.0 0.5 1.0 1.5
Latency (ms)

0

5

10

P
o
w

e
r

(m
W

)

stencil-stencil2d

DMA

Cache

0.0 0.2 0.4 0.6 0.8 1.0
Latency (ms)

0

10

20

30

P
o
w

e
r

(m
W

)

stencil-stencil3d

DMA

Cache

0.0 0.1 0.2 0.3 0.4 0.5
Latency (ms)

0

20

40

60

80

100
P
o
w

e
r

(m
W

)
md-knn

DMA

Cache

0.0 0.1 0.2 0.3
Latency (ms)

0

2

4

6

8

10

P
o
w

e
r

(m
W

)

spmv-crs

DMA

Cache

0.00 0.05 0.10 0.15 0.20
Latency (ms)

0

20

40

60

P
o
w

e
r

(m
W

)

fft-transpose

DMA

Cache

Fig. 8: Power-performance Pareto curves for DMA- and cache-based accelerators. EDP optimal design points are shown as stars.
Benchmarks are ordered left-to-right, top-down by preference for a DMA-based vs. a cache-based memory system.

is because the kernel’s three-dimensional memory access pat-
tern creates nonuniform stride lengths, which are gracefully
handled by the on-demand nature of a cache. In contrast, even
the most optimized DMA design spends half of its execution
time waiting for DMA and flush operations. The cost of this
performance is 2× to 3× increased power.

md-knn:
md-knn is a very compute intensive application. In this

benchmark, there are 12 FP multiplies per atom-to-atom
interaction, so the power consumption of this benchmark is
dominated by functional units rather than memory. Also, the
optimized DMA system is able to fully overlap compute with
data movement because full/empty bits are very effective in
this benchmark. Figure 8 shows that the Pareto curves for
cache and DMA designs largely overlap, demonstrating that
either memory system can be an acceptable choice.

spmv-crs:
On this benchmark, a cache system is able to outperform

a DMA system with lower power as well. This is due to the
indirect memory accesses inherent to sparse matrix multiply
algorithms, where the first set of loads provide the memory
addresses for the next set that actually returns the data.
Full/empty bits may not be effective on this benchmark if
the data pointed to by a matrix index has not yet arrived,
since DMA sends data sequentially, but a cache can fetch
arbitrary memory locations. Caches thus eliminate most of
the idling time, leading to better performance. Lower power
on caches is achieved by being able to use a smaller cache
than the scratchpads.

fft-transpose:
fft-transpose also performs better with caches than

DMA but for slightly different reasons. There are no indirect
memory accesses in this benchmark. Instead, the parallel
implementation of this benchmark possesses a stride length
of 512 bytes, meaning that each loop iteration (aka datapath
lane) only reads eight bytes per 512 bytes of data. As a result,
even with full/empty bits, a DMA system must supply nearly
all of the data before the computation can begin, whereas this
is not a problem for the cache system. Again, lower power
is achieved by a smaller cache than scratchpads.

B. Design Decision Comparison

In addition to deciding the type of memory system to use,
accelerator designers must also select local design parameters
like the datapath parallelism and local memory size and
bandwidth. In this section, we show that when system-
level effects are considered, these parameters can change
considerably compared to when an accelerator is designed
in isolation.

To illustrate how optimal design parameters are affected
by system-level effects, we consider the following design
scenarios:

1) Baseline: design accelerators in isolation.
2) Co-designed DMA: use DMA to transport data over a

32-bit system bus.
3) Co-designed cache: use a hardware-managed cache for

the accelerator’s local memory.
4) Co-designed cache with 64-bit bus: Same as above, but

we double the width of the system bus.

Parallelism
(32 Lanes)

SRAM
(512B)

Local BW
(4 Ports)

Isolated Optimal
DMA Optimal
w/ 64-bit Bus

Cache Optimal
w/ 32-bit Bus

Cache Optimal
w/ 64-bit Bus

(a) aes-aes

Parallelism
(4 Lanes)

SRAM
(34KB)

Local BW
(16 Ports)

Isolated Optimal
DMA Optimal
w/ 64-bit Bus

Cache Optimal
w/ 32-bit Bus

Cache Optimal
w/ 64-bit Bus

(b) nw-nw

Parallelism
(32 Lanes)

SRAM
(49KB)

Local BW
(16 Ports)

Isolated Optimal
DMA Optimal
w/ 64-bit Bus

Cache Optimal
w/ 32-bit Bus

Cache Optimal
w/ 64-bit Bus

(c) gemm-ncubed

Parallelism
(32 Lanes)

SRAM
(64KB)

Local BW
(16 Ports)

Isolated Optimal
DMA Optimal
w/ 64-bit Bus

Cache Optimal
w/ 32-bit Bus

Cache Optimal
w/ 64-bit Bus

(d) stencil-stencil2d

Parallelism
(16 Lanes)

SRAM
(128KB)

Local BW
(16 Ports)

Isolated Optimal
DMA Optimal
w/ 64-bit Bus

Cache Optimal
w/ 32-bit Bus

Cache Optimal
w/ 64-bit Bus

(e) stencil-stencil3d

Parallelism
(32 Lanes)

SRAM
(45KB)

Local BW
(16 Ports)

Isolated Optimal
DMA Optimal
w/ 64-bit Bus

Cache Optimal
w/ 32-bit Bus

Cache Optimal
w/ 64-bit Bus

(f) md-knn

Parallelism
(32 Lanes)

SRAM
(30KB)

Local BW
(16 Ports)

Isolated Optimal
DMA Optimal
w/ 64-bit Bus

Cache Optimal
w/ 32-bit Bus

Cache Optimal
w/ 64-bit Bus

(g) spmv-crs

Parallelism
(32 Lanes)

SRAM
(21KB)

Local BW
(16 Ports)

Isolated Optimal
DMA Optimal
w/ 64-bit Bus

Cache Optimal
w/ 32-bit Bus

Cache Optimal
w/ 64-bit Bus

(h) fft-transpose

Fig. 9: Comparison of accelerator microarchitectural parameters across four design scenarios. The vertices of the Kiviat plots represent the
number of datapath lanes, SRAM sizes, and local memory bandwidth, normalized to the isolated optimal design, shown on the upper-left
corner, for each benchmark.

We focus our comparisons on three accelerator microarchi-
tectural parameters: datapath lanes, local SRAM/cache size,
and local memory bandwidth to datapath lanes. As before,
we select the EDP optimal points from each design scenario
for comparison.

Figure 9 shows the differences in these three dimensions
for each benchmark under the four design scenarios. For
each benchmark, the triangle on the upper-left corner shows
microarchitecture parameters for isolated optimal designs.
The colored triangles, in turn, represent optimal design
choices for DMA with 32-bit bus, cache with 32-bit bus, and
cache with 64-bit bus. To show differences between isolated
optimal and co-designed optimal choices, we normalize all
the designs to the design parameters of the isolated design.

1) Isolated vs Co-Designed Microarchitecture: It is imme-
diately apparent that accelerators designed in isolation over-
provision accelerator resources. In Figure 9, almost every
colored triangle is smaller than the baseline triangle, showing
that isolated designs tend to over-provision computational
resources, and more balanced designs can be found by
accounting for system-level effects.

This over-design is most pronounced in local memory
bandwidth and SRAM size for cache-based designs. Isolated
designs attempt to parallalize computation as much as pos-

sible, requiring very high internal memory bandwidth, but
in a more realistic environment, the need to move data from
system to accelerator imposes a upper bound on performance
that makes internal memory-level parallelism less critical.
For example, on spmv-crs and md-knn, both DMA-
and cache-based designs require much lower local memory
bandwidth than the isolated design. In addition, because
caches have the feature of automatic data replacement, they
can be sized smaller than scratchpads which must hold all
the data, resulting in energy improvements.

In general, caches tend to prefer more parallel datapaths
than DMA, as shown in md-knn and fft-transpose,
since their fine-grained nature allows more parallel memory
accesses. In fact, gemm-ncubed an example where a co-
designed cache-based accelerator is more parallel than both
the isolated design and a DMA-based one.

2) Impact of System Bus Bandwidth: As a proxy for
resource contention in a loaded system, we vary the system
bus width to modulate the bus bandwidth available to acceler-
ators. If we compare accelerators designed with a 64-bit bus
to those designed with a 32-bit bus (orange and red triangles
in Figure 9, respectively), we see that accelerators designed
with lower bus bandwidth tend to provision fewer datapath
lanes (md-knn, spmv-crs) and local memory bandwidth

ae
s-a

es

nw-n
w

gem
m

-n
cu

bed

st
en

cil
2d

st
en

cil
3d

m
d-k

nn

sp
m

v-
cr

s

fft
-tr

an
sp

os
e

Geo
m

ea
n

0

1

2

3

4

5

6

7

8

E
D

P
 I
m

p
ro

v
e
m

e
n
t

(X
) DMA w/ 32bit bus

Cache w/ 32bit bus

Cache w/ 64bit bus

Fig. 10: EDP improvement of co-designed accelerators in different
scenarios, normalized to EDP of isolated designs. The design
parameters of each optimal design point are illustrated in Figure 9.

(nw, stencil2d, and spmv-crs). These effects happen
for the same reasons co-designed accelerators are leaner than
isolated accelerators.

3) EDP Improvement: Figure 10 shows the improvements
in EDP when accelerators are co-designed, compared to how
an accelerator designed in isolation would behave under a
more realistic system. This is the same analysis as Figure 1,
but applied to more benchmarks and three different design
scenarios. Overall, average EDP improves by 1.2×, 2.2×,
and 2.0× for accelerators with DMA, caches with 32-bit
system bus, and caches with a 64-bit bus, respectively.

The EDP improvements for co-designed cache-based ac-
celerators is higher than that for DMA-based accelerators
because an overly aggressive design for a cache-based accel-
erator results in a large, highly multi-ported cache, which are
much more expensive to implement than partitioned scratch-
pads. Furthermore, we see that on average, improvements
are greater for cache-based accelerators with a 32-bit system
bus than a 64-bit bus. In other words, co-design is even more
important for contended systems than uncontended systems.

VI. RELATED WORK

Much of the existing literature on accelerators focuses on
the design and optimization of the computational datapaths
and/or internal memory while assuming that all the data
needed already resides in on-chip SRAM. To understand
how data movement affects accelerator design, we have
discussed caches, coherency, and virtual memory for accel-
erators, DMA optimizations, and simulators and prototyping
platform. Each of these has a considerable body of existing
work, and we will describe how our work relates to and
differs from them.

We observe that there are two classes of accelerated
workloads for which optimization of data movement from

global memory to local memory is absolutely critical: big
data applications and near-data processing applications. Ac-
celerators for memcached [18], database partitioning [17],
and those built with near-data CGRAs [33] all contain spe-
cialized interfaces co-designed with the system bus interface
and/or memory substrates for efficient bulk data movement
and communication. Accelerators that do not fall into these
workloads are often tightly coupled with the existing general
purpose core and rely on it for data [3].

Caches, coherency, virtual memory, and memory consis-
tency models are all devoted to accessing data on-demand in
a safe, understandable, and familiar manner. They have been
well studied in the GPU literature in industry and academia
[34], [35], [36], [37], [38], but only recently has there been
movement towards more fixed function, less programmable
accelerators [39], [40], [41], [42], [43]. Examples include
IBM’s Coherent Accelerator Processor Interface [7], ARM’s
AXI Accelerator Coherency Port [9], The IBM Cell BE
architecture featured a hardware coherent DMA engine,
which addresses the software coherency management issues
we have raised [44]. and the Intel Heterogeneous Architec-
ture Research Platform [8]. Researchers have investigated
specialized coherence protocols for accelerators [45] and
hybrid memory models for heterogeneous platforms [46].
With access to global memory spaces, researchers have also
devised methods to protect the SoC and accelerators from
unsafe memory accesses [47].

Finally, others have integrated accelerator simulators with
gem5, such as gem5-gpu [48] and PARADE [14]. PA-
RADE is also an SoC simulation framework, but it only
models traditional DMA-based accelerators where all data
must be copied to local scratchpads before compute begins.
In contrast, gem5-Aladdin is able to model a cache-based
accelerator with variable latency memory accesses as well
as various optimizations on DMA to reduce idle time.

VII. CONCLUSION

This paper considers an holistic approach to co-design
accelerator microarchitecture and SoC platform parameters.
We demonstrate that co-design is critical to achieving bal-
anced, efficient accelerator designs. We highlight that data
movement and coherence management for accelerators are
significant yet often unaccounted components of total accel-
erator runtime, resulting in misleading performance predic-
tions and inefficient accelerator designs. We develop gem5-
Aladdin, an SoC simulator that captures dynamic interactions
between accelerators and the SoC platform, and validate
it to within 6% against real hardware. This allows us to
explore the design space of accelerator-system co-design,
and we show that the optimal energy-delay-product (EDP)
of an accelerator microarchitecture can improve by up to
7.4× when system-level effects are considered compared to
optimizing accelerators in isolation.

VIII. ACKNOWLEDGMENTS

This work was partially supported by C-FAR, one of six centers
of STARnet, a Semiconductor Research Corporation program spon-
sored by MARCO and DARPA. The work was also supported in
part by DARPA under Contract #: HR0011-13-C-0022. Y.S. Shao
was partially supported by an IBM Ph.D. Fellowship and a Siebel
Scholarship. S. Xi is partially supported by a National Science
Foundation Graduate Fellowship. This research was, in part, funded
by the U.S. Government. The views and conclusions contained in
this document are those of the authors and should not be interpreted
as representing the official policies, either expressed or implied, of
the U.S. Government.

REFERENCES

[1] Y. S. Shao and D. Brooks, “Research Infrastructures for Hardware
Accelerators,” Synthesis Lectures on Computer Architecture, 2015.

[2] Y.-H. Chen, T. Krishna, J. Emer, and V. Sze, “Eyeriss: An Energy-
Efficient Reconfigurable Accelerator for Deep Convolutional Neural
Networks,” in ISSCC, 2016.

[3] W. Qadeer, R. Hameed, O. Shacham, P. Venkatesan, C. Kozyrakis,
and M. A. Horowitz, “Convolution engine: Balancing efficiency &
flexibility in specialized computing,” in ISCA, 2013.

[4] T. Chen, Z. Du, N. Sun, J. Wang, C. Wu, Y. Chen, and O. Temam,
“Diannao: A small-footprint high-throughput accelerator for ubiquitous
machine-learning,” in ASPLOS, 2014.

[5] B. Reagen, P. Whatmough, R. Adolf, S. Rama, H. Lee, S. K. Lee, J. M.
Hernandez-Lobato, G.-Y. Wei, and D. Brooks, “Minerva: Enabling
Low-Power, Highly-Accurate Deep Neural Network Accelerators,” in
ISCA, 2016.

[6] I. Magaki, M. Khazraee, L. V. Gutierrez, and M. B. Taylor, “ASIC
Clouds: Specializing the Datacenter,” in ISCA, 2016.

[7] J. Stuecheli, “POWER8 Processor,” in HotChips, 2013.
[8] D. Bryant, “Disrupting the Data Center to Create the Digital Services

Economy,” Intel Announcement, 2014.
[9] S. Neuendorffer and F. Martinez-Vallina, “Building Zynq accelerators

with Vivado high level synthesis,” in FPGA, 2013.
[10] N. L. Binkert, B. M. Beckmann, G. Black, S. K. Reinhardt, A. G.

Saidi, A. Basu, J. Hestness, D. Hower, T. Krishna, S. Sardashti, R. Sen,
K. Sewell, M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood, “The
gem5 simulator,” SIGARCH Computer Architecture News, 2011.

[11] T. E. Carlson, W. Heirman, and L. Eeckhout, “Sniper: Exploring the
Level of Abstraction for Scalable and Accurate Parallel Multi-Core
Simulation,” in SC, 2011.

[12] S. Kanev, G.-Y. Wei, and D. Brooks, “XIOSim: Power-Performance
Modeling of Mobile x86 Cores,” in ISLPED, 2012.

[13] Y. S. Shao, B. Reagen, G.-Y. Wei, and D. Brooks, “Aladdin: A
Pre-RTL, Power-Performance Accelerator Simulator Enabling Large
Design Space Exploration of Customized Architectures,” in ISCA,
2014.

[14] J. Cong, Z. Fang, M. Gill, and G. Reinman, “PARADE: A Cycle-
Accurate Full-System Simulation Platform for Accelerator-Rich Ar-
chitectural Design and Exploration,” in ICCAD, 2015.

[15] G. Venkatesh, J. Sampson, N. Goulding, S. Garcia, V. Bryksin,
J. Lugo-Martinez, S. Swanson, and M. B. Taylor, “Conservation cores:
reducing the energy of mature computations,” ASPLOS, 2010.

[16] E. S. Chung, P. A. Milder, J. C. Hoe, and K. Mai, “Single-Chip
Heterogeneous Computing: Does the Future Include Custom Logic,
FPGAs, and GPGPUs?,” in MICRO, 2010.

[17] L. Wu, R. J. Barker, M. A. Kim, and K. A. Ross, “Navigating Big Data
with High-Throughput, Energy-Efficient Data Partitioning,” in ISCA,
2013.

[18] K. T. Lim, D. Meisner, A. G. Saidi, P. Ranganathan, and T. F. Wenisch,
“Thin Servers with Smart Pipes: Designing SoC Accelerators for
Memcached,” in ISCA, 2013.

[19] R. Hameed, W. Qadeer, M. Wachs, O. Azizi, A. Solomatnikov, B. C.
Lee, S. Richardson, C. Kozyrakis, and M. Horowitz, “Understanding
Sources of Inefficiency in General-Purpose Chips,” in ISCA, 2010.

[20] H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger, “Neural
Acceleration for General-Purpose Approximate Programs,” in MICRO,
2012.

[21] A. Krishna, T. Heil, N. Lindberg, F. Toussi, and S. VanderWiel,
“Hardware Acceleration in the IBM PowerEN Processor: Architecture
and Performance,” in PACT, 2012.

[22] “TI OMAP Applications Processors.”
[23] B. Blaner, B. Abali, B. Bass, S. Chari, R. Kalla, S. Kunkel, K. Lauri-

cella, R. Leavens, J. Reilly, and P. Sandon, “IBM POWER7+ Processor
On-Chip Accelerators for Cryptography and Active Memory Expan-
sion,” IBM Journal of Research and Development, 2013.

[24] P. Yedlapalli, N. C. Nachiappan, N. Soundararajan, A. Sivasubrama-
niam, M. T. Kandemir, and C. R. Das, “Short-Circuiting Memory
Traffic in Handheld Platforms,” in MICRO, 2014.

[25] B. Reagen, R. Adolf, Y. S. Shao, G.-Y. Wei, and D. Brooks, “Mach-
Suite: Benchmarks for Accelerator Design and Customized Architec-
tures,” in IISWC, 2014.

[26] Y. S. Shao and D. Brooks, “ISA-Independent Workload Characteri-
zation and its Implications for Specialized Architectures,” in ISPASS,
2013.

[27] A. Gutierrez, J. Pusdesris, R. G. Dreslinski, T. Mudge, C. Sudanthi,
C. D. Emmons, M. Hayenga, and N. Paver, “Sources of Error in Full-
System Simulation,” in ISPASS, 2014.

[28] M. Kistler, M. Perrone, and F. Petrini, “Cell Multiprocessor Commu-
nication Network: Built for Speed,” in IEEE Micro, 2006.

[29] D. Lustig and M. Martonosi, “Reducing GPU Offload Latency via
Fine-Grained CPU-GPU Synchronization,” in HPCA, 2013.

[30] M. Tan, B. Liu, S. Dai, and Z. Zhang, “Multithreaded Pipeline
Synthesis for Data-Parallel Kernels,” in ICCAD, 2014.

[31] J. Huthmann, J. Oppermann, and A. Koch, “Automatic High-Level
Synthesis of Multi-Threaded Hardware Accelerators,” in FPL, 2014.

[32] D. Burger, J. R. Goodman, and A. Kagi, “Memory Bandwidth Limi-
tations of Future Microprocessors,” in ISCA, 1996.

[33] A. Farmahini-Farahani, J. H. Ahn, K. Morrow, and N. S. Kim, “NDA:
Near-DRAM acceleration architecture leveraging commodity DRAM
devices and standard memory modules,” in HPCA, 2015.

[34] M. Harris, “Unified Memory in CUDA 6,” 2013.
[35] J. Power, A. Basu, J. Gu, S. Puthoor, B. M. Beckmann, M. D. Hill,

S. K. Reinhardt, and D. A. Wood, “Heterogeneous System Coherence
for Integrated CPU-GPU Systems,” in MICRO, 2013.

[36] J. Power, M. D. Hill, and D. A. Wood, “Supporting x86-64 address
translation for 100s of gpu lanes,” in HPCA, 2014.

[37] B. Pichai, L. Hsu, and A. Bhattacharjee, “Architectural Support for
Address Translation on GPUs,” ASPLOS, 2014.

[38] R. Komuravelli, M. D. Sinclair, J. Alsop, M. Huzaifa, M. Kotsifakou,
P. Srivastava, S. V. Adve, and V. S. Adve, “Stash: Have Your
Scratchpad and Cache It Too,” in ISCA, 2015.

[39] M. J. Lyons, M. Hempstead, G.-Y. Wei, and D. Brooks, “The Ac-
celerator Store: A Shared Memory Framework for Accelerator-Based
Systems,” TACO, 2012.

[40] M. Lyons, G.-Y. Wei, and D. Brooks, “Multi-accelerator system
development with the shrinkfit acceleration framework,” in ICCD,
2014.

[41] C. F. Fajardo, Z. Fang, R. Iyer, G. F. Garcia, S. E. Lee, and
L. Zhao, “Buffer-integrated-cache: a cost-effective sram architecture
for handheld and embedded platforms,” in DAC, 2011.

[42] Y. S. Shao, S. Xi, V. Srinivasan, G.-Y. Wei, and D. Brooks, “Toward
Cache-Friendly Hardware Accelerators,” in Sensors and Cloud Archi-
tectures Workshop (HPCA), 2015.

[43] T. J. Ham, J. L. Aragón, and M. Martonosi, “DeSC: Decoupled Supply-
Compute Communication Management for Heterogeneous Architec-
tures,” in MICRO, 2015.

[44] T. Chen, R. Raghavan, J. Dale, and E. Iwata, “Cell Broadband Engine
Architecture and its First Implementation - A Performance View,” in
IBM Journal of Research and Development, 2007.

[45] S. Kumar, A. Shriraman, and N. Vedula, “Fusion: Design Tradeoffs in
Coherent Cache Hierarchies for Accelerators,” in ISCA, 2015.

[46] J. H. Kelm, D. R. Johnson, W. Tuohy, S. S. Lumetta, and S. J. Patel,
“Cohesion: a hybrid memory model for accelerators,” in ISCA, 2010.

[47] L. E. Olson, J. Power, M. D. Hill, and D. A. Wood, “Border Control:
Sandboxing Accelerators,” in MICRO, 2015.

[48] J. Power, J. Hestness, M. Orr, M. Hill, and D. Wood, “gem5-gpu: A
Heterogeneous CPU-GPU Simulator,” Computer Architecture Letters,
2014.

