
Understanding the Critical Path in Power State Transition Latencies

Sam (Likun) Xi, Marisabel Guevara‡, Jared Nelson, Patrick Pensabene, and Benjamin C. Lee‡

Systems Architecture Integration Laboratory. Pratt School of Engineering, Duke University
‡ Corresponding authors: mg@cs.duke.edu, benjamin.c.lee@duke.edu

Abstract—Increasing demands on datacenter com-
puting prompts research in energy-efficient warehouse
scale systems. In one approach, server activation policies
invoke low-power sleep states but the power state
transition latency must be small to produce effective
energy savings. Chrome OS and Arch Linux require
50ms and 650ms, respectively, to enter sleep states.
These states consume merely 4−6% of nominal power.
By analyzing the critical path, we propose strategies for
selecting hardware components and optimizing kernel
resume sequences to make datacenter server activation
viable. With fast transitions, server activation can pro-
vide better performance at lower energy than dynamic
voltage and frequency scaling.
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I. INTRODUCTION

Datacenter power consumption has rapidly grown
by 36% in the five year period following 2005. As of
2010, datacenters use 2% of the energy consumed in
the United States and 1.3% of the energy consumed
around the world [12]. In the USA, this amounted to
77.5 billion kWh consumed [5]. A large portion of
this energy is spent powering idle servers performing
little useful work. Even at idle, servers typically draw
about 60% of peak power. Average datacenter server
utilization is 20− 30%, which means a huge amount
of power is consumed with no gain [10].

There is a large body of research on reducing
the energy consumption of datacenters. Transitioning
servers into a low-power sleep state during idle is one
approach to improving the energy proportionality of
large scale systems [6], [10]. The effectiveness of an
activation policy depends largely on the latency to
transition between active and sleep power states.

What are contributors to power state transition
latencies? Prior work identifies opportunities to reduce
transition latencies via hardware choices, e.g. mobile
instead of server components [13]. In this work, we
consider software contributors to power state transi-
tion latencies. In particular, we analyze power states in
standard and mobile-class operating systems to draw
lessons for datacenter servers.

We find that stock Arch Linux running on a high
end custom built desktop has transition latencies of
650ms, which we deem too slow for sleep state power
policies. Alternatively, Chrome OS is an operating
system that has been optimized for fast boot and
resume, and we observe that transition latencies of

50ms are achievable. This sub-100ms latency is in-
strumental for server activation policies and datacenter
energy efficiency.

We evaluate power mode responsiveness in the
context of PowerNap, a server activation policy pro-
posed in prior work [10]. By studying two machines
and operating systems, we determine that it is feasible
to put a server into sleep mode during idle periods
and wake it up quickly enough to achieve significant
energy savings with minimal impact on performance
and response time. Indeed, performance and power
trade-offs are often better than those from highly
responsive dynamic voltage and frequency scaling.

The rest of this paper is structured as follows. In
Section 2, we discuss related work and server sleep
states. Sections 3 and 4 describe our experimental
methodology and results, respectively. In Section 5,
we provide a discussion about the results and their
applicability to server sleep states. Finally, we con-
clude in Section 6.

II. BACKGROUND
The large variation in transition latencies measured

in prior work motivates our study. Prior measure-
ments range from milliseconds to hundreds of seconds
across desktop or mobile platforms.

Server Activation. Putting servers into sleep states
during activity troughs is a common approach to
reducing datacenter power consumption. Building
energy-proportional systems at this scale is a cru-
cial part of improving datacenter energy-efficiency
[3]. An energy-proportional system consumes power
in proportion to its workload. Server activation can
improve the energy efficiency of a system given the
right system features and a power management policy.

Meisner et al. propose PowerNap, a policy for
transitioning servers into sleep states [10]. They com-
pare its power-conserving ability over a range of CPU
utilizations and transition latencies, finding that sub-
100ms latencies are necessary to provide substan-
tial power savings. However, the PowerNap policy
optimistically assumes that a 10ms latency is easily
achievable; in practice, this is actually quite difficult.

Gandhi et al. propose a variety of power man-
agement policies, and characterize the performance-
per-watt (PPW) of each over a range of idle power
consumption and setup times [6]. This study shows
that transition policies can provide improvements in
PPW with transition latencies of 20-50s. Alternatively,
Agarwal et al. propose an approach to service a small



number of tasks while a server is in a sleep state [2].
A low power processor on the network interface card
allows the system to maintain a low power sleep state
until the computational power of the main processor
is required again.

Server Sleep States. The Advanced Configuration
and Power Interface (ACPI) specification defines a
standard for an operating system to perform power
management of hardware components [1]. Server
activation policies use the sleeping state S3, also
known as suspend-to-RAM. In S3 sleep, the processor
context, cache contents, and chipset context are all
lost, but main memory remains powered. We focus
on the S3 state, which provides a balance between
power savings and resume time as everything but main
memory is powered down.

In contrast, the S2 state only powers down the pro-
cessor; in modern servers, CPUs account for merely
33% of total power usage [4]. On the other hand,
the S4 “hibernate” sleep copies DRAM content to the
hard disk and the system is completely powered down.
Although S4 achieves greater power savings, DRAM
data must be restored upon resume thus incurring an
expensive transition latency [10].

Using a power mode incurs a sleep and a resume
latency. We focus our analysis on resume latency as
this, to a large degree, determines the response time
of a datacenter using a power state transition policy.
Further, if the resume latency is fast enough, long
sleep latencies can be hidden, because if a query
arrives when a server is going to sleep, another server
can resume and service it. However, for the sake of
completeness, sleep latency is briefly discussed.

III. METHODS
Kernel Logging. Linux kernels post version

3.6 can report individual device resume times
during power state transitions. We enable this
functionality with the command echo 1 >
/sys/power/pm_print_times. Suspend-to-
RAM was manually initiated by the command echo
‘‘mem’’ > /sys/power/state, and resume
was initiated by pressing an appropriate key. We
capture the contents of the kernel ring buffer for
several iterations of the sleep and resume sequence.
We then analyze the sequences to find individual
device resume times and trends of interest.

To measure power, we use a watts up PROTMwatt
meter. The meter plugs into the wall outlet and the
device’s power supply plugs into the meter. For each
device, we initiate sleep and wakeup as described
above. The meter samples power usage at 1Hz, which
is the highest timing resolution. Finally, we retrieve
the data from the meter via USB.

Testing Platforms. We study the transition laten-
cies of two systems: a Samsung Chromebook Series 5
550 and a custom built Arch Linux desktop (Table I).
The Arch Linux platform provides a baseline for com-
paring latencies and orderings of kernel components

during system resume. We could not test our blade
server because the BIOS did not support S3 sleep.

For comparison, we consider the potential for
mobile-class operating systems in datacenter servers.
Chrome OS is a lightweight operating system devel-
oped by Google which run on laptops called Chrome-
books [7]. Google touts fast boot speeds (∼7s) and
resume speeds as a major feature of Chrome OS.
Our detailed study of the optimized resume sequence
in Chrome OS is motivated by its low transition
latency from hibernate to active. Coupled with mobile
hardware, the Chromebook is a system with the fastest
transition latency out of x86-capable systems.

TABLE I. Hardware configurations of test platforms.

Linux Desktop Chromebook
Intel Core i7-3930K, 3.2GHz Intel Celeron 867, 1.3GHz

16GB DDR3 RAM 4GB DDR3 RAM
NVIDIA GTX 580 Intel integrated graphics

160GB HDD 16GB mSATA

IV. EXPERIMENTAL RESULTS

Arch Linux. The Arch Linux desktop takes 680ms
to suspend all devices and enter S3 sleep. The desktop
takes about 650ms to resume from sleep, which can
be broken down into three main stages: CPU cores
(72ms), no interrupt (184ms), and the rest of the
devices (∼ 400ms). Unlike devices which can be
suspended in parallel, each core is powered down one
by one. We found similarly long core sleep times on
other very different Linux machines, suggesting that
it is a result of software rather than hardware. The
timeline for the 40 devices that took the longest to
resume is shown in Figure 1. The devices that are
not shown here have fast resume latencies and do not
affect the critical path of the power state transition.

Resume begins by waking all CPU cores, each
of which takes 12ms (not shown on the timeline).
This is followed by a noirq (no interrupt request)
stage, which allows critical components to be woken
up without simultaneously resuming others and poten-
tially creating synchronization conflicts. The noirq
stage cannot be parallelized as that would defeat its
purpose, and thus it takes a considerable amount of
time. Kernel logs state that the noirq stage requires
184.2ms to complete. After this stage, PCI devices
are brought up simultaneously. SATA links follow;
they take the longest at over 300ms each, and their
attached devices are resumed immediately afterwards.
For instance, the attached HDD took about 50ms to
resume.

When all the devices have been brought up, the
root partition of the filesystem is remounted (0.5s)
and then the Ethernet link is re-established (2.5s).
These are not hardware components and thus do not
appear on the timeline, but they are required. The 0.5s
latency in remounting the filesystem can be reduced
by switching out the HDD for an SSD; in fact, kernel
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Figure 1. Resume sequence timeline of the Arch Linux desktop. A breakdown of the 650ms resume latency
shows that the primary contributors are CPUs (72ms), noirq (184ms), and additional devices (400ms).
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Figure 2. Resume sequence start and finish time distri-
bution on the desktop. Most devices begin resuming
around 200ms after the system wakes up and finish
resuming within 50ms.

logs on Linux machines with SSDs did not indicate
any latency in remounting the filesystem.

We can avoid the costly latency of re-establishing
a network link given that servers in a datacenter
rarely migrate across networks. Since a network link
is essentially a valid IP address, a server that is woken
up before its IP address expires (typically on the order
of hours) can continue to use the old address. The
network driver can be updated to not return its IP
address to the available pool of addresses as part of
the suspend sequence. Alternatively, a NIC equipped
with an embedded processor can provide continuous
operation for networked applications while the rest of
the platform sleeps [2].

The timeline indicates little opportunity to opti-
mize the resume sequence. By removing components
unnecessary to a server (i.e. audio cards, video ports,
etc.), the noirq stage can be optimistically shortened
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Figure 3. Desktop power consumption while idling
and sleeping. The hardware setup causes the reported
sleeping power consumption to appear to be 0W, but
S3 sleep actually consumes 5W, shown by the jump
in power to 5W before the wake up signal.

to 100ms. However, an optimized resume latency
cannot be less than 300ms because of the SATA links,
which are the slowest individual devices.

Figure 2 shows the histogram of resume start and
completion times for each device on Arch Linux.
Most devices initiate resume 200ms after the first
device and about 20% of devices complete resume
at 600ms. Figure 1 demonstrates that most devices
complete resume in under 50ms. Thus, any optimiza-
tion of sleep state responsiveness must address the
few devices with long resume latency.

Finally, power measurements shown in Figure 3
demonstrate that the desktop consumes around 130W
when idling in a fully powered state compared to a
mere 5W in S3 sleep, 3.8% of nominal.



0 100 200 300 400 500 600
Trackpad   
Keyboard   
Webcam   

Rate matching hub   
CPU heat monitor   

USB controller   
 Battery   

Watchdog        

Power subsystem        

Watchdog   
Power subsystem   

USB controller        

Lid switch   
Sound card   

Graphics   
Ethernet controller   

Time (ms)

 

 

Figure 4. Resume sequence timeline of the Chromebook. A breakdown of the overall 600ms resume latency
shows that the primary contributors are the graphics system (300ms), sound card (500ms), and webcam (450ms).
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Figure 5. Resume sequence start and finish time
distribution on the Chromebook. Most devices begin
and finish their resumes within the first 100ms of the
overall resume sequence.

Chrome OS. The Chromebook suspends all of its
devices in 45ms and then its two physical cores at
2ms each for a total of 49ms. The Chromebook uses
Intel Celeron CPUs, whose microarchitecture is much
simpler than that of the Core i7 used in the desktop
and explains why the Chromebook’s sleep latency is
so much shorter.

The Chromebook takes about 600ms to resume all
of its devices. The timeline of the critical path for
the resume sequence is shown in Figure 4. In stark
contrast to the desktop, the Chromebook’s noirq
stage takes only 1.74ms; essentially all of the 600ms
is spent on simultaneously resuming the components.
We find that the wireless network card takes much
longer to resume than the the Gigabit Ethernet card
(data not shown) typically used in servers.

We can reduce the resume latency to around 50ms
with some optimizations. First, note that the sound
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Figure 6. Chromebook power consumption while
idling and sleeping. In sleep, only 5% of nominal
power is consumed.

card1 and graphics subsystems take up the majority of
the 600ms latency, but they are generally not critical
or needed in servers (certain applications may bene-
fit from dedicated multimedia processing hardware).
This devices can either be removed entirely or have
their resume sequences delayed until needed.

Also, observe that USB host devices take roughly
50-100ms to resume, but servers are unlikely to have
peripheral devices attached over USB. Thus, USB
hosts can have their resume sequences delayed until
they are required (if at all). Other irrelevant com-
ponents like the webcam, lid switch, trackpad, and
keyboard can be stripped out entirely.

With these optimizations, resume latency drops to
around 50ms. Kernel logs for the Chromebook did not
report any latency for remounting filesystems, which
we attribute to the use of a SSD instead of a HDD for
local storage. Re-establishing a network connection

1The sound card takes a long time to resume because sleeps are
inserted in its resume sequence to prevent it from making popping
sounds.



takes 0.95s, yet servers in a datacenter can avoid
requesting a new IP address by the same techniques
mentioned for the Arch Linux system.

Figure 5 shows the distribution of all device re-
sume start and completion times on the Chromebook
in time bins of 50ms. Nearly 80% of all devices begin
resuming within 75ms of the first device and nearly
all complete their resume sequences within 50ms. The
other 20% of devices begin and finish resume around
300ms, and by examining the complete device resume
timeline (not shown), we see that these devices are
waiting on the graphics subsystem. If we eliminate
such long latency devices, we can either eliminate the
devices that are waiting or allow them to begin their
resume sequence earlier, thus shortening the overall
resume latency.

Finally, power measurements shown in Figure 6
demonstrate that the Chromebook draws on average
10W while idling in a fully powered state, but in S3
sleep, it drops to 0.6-0.7W, which is merely 6% of
full power consumption.

V. ANALYTICAL RESULTS
Let’s consider the implications of fast response

times. We evaluate a system using PowerNap, a policy
for server activation [10]. In this prior work, Meisner
et al. conclude that a transition latency on the order
of 10ms is required to achieve significant power
savings and performance improvements over a system
using DVFS. We apply the same methodology to
evaluate the Chromebook and Arch Linux desktop as
PowerNap systems with 50ms and 650ms latencies,
respectively. For comparison, our evaluation includes
data for an optimistic 10ms latency.

Meisner et al. use analytical models to approxi-
mate performance and power as a function of power
state transition latencies and system utilization. The
performance model estimates response time with an
M/G/1 queue with exceptional first service time,
which accounts for the power state transition latency
for the first task that arrives after an idle period. The
power model simply accounts for the fraction of time
in each power state.

We refer the reader to PowerNap for detailed an-
alytical models [10]. With these models, we compute
average power and response time for systems that
have different transition latencies: Generic PowerNap
Tt = 10ms, ChromeOS PowerNap Tt = 50ms, and
Linux Desktop PowerNap Tt = 650ms. Response
times are relative to a system with no power man-
agement policy.

We further compare against dynamic voltage and
frequency scaling (DVFS). In comparison to server
activation, DVFS is very responsive (e.g., microsec-
onds) but offers limited benefit. Only processor power
is modulated and we estimate that processor power
accounts for only 33% of the total [4]. With suffi-
ciently fast resume times, server activation policies
may offer more attractive performance-power trade-
offs than DVFS.
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Figure 7. Power scaling comparison between Power-
Nap and DVFS. The Chrome OS system’s power con-
sumption is less than that of DVFS for typical server
utilization levels, whereas the Arch Linux system’s
resume latency is too slow to be of any benefit.
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Figure 8. Response time scaling comparison between
PowerNap and DVFS. The Chrome OS system has
faster relative response times than that of DVFS at
all utilizations, but beyond Tt = 50ms, DVFS will
provide faster response times at low utilizations.

In Figure 7, we find that PowerNap with transition
latency of Tt = 650ms is highly inefficient, consum-
ing less power than DVFS only for near-idle systems
(e.g., utilization below 4%). However, at Tt = 50ms,
PowerNap is far more competitive, consuming less
power than DVFS even as utilization increases to
35%. Furthermore, if Tt drops to 10ms, then Pow-
erNap’s power advantage over DVFS increases up
to 45% utilization. Because most datacenter servers



operate under 50% utilization [3], a 10ms latency
would be ideal. But we show that a 50ms latency is
highly competitive and viable with the optimizations
to device and kernel resume sequences.

In terms of performance, Figure 8 indicates that
PowerNap will always be slower than DVFS given
long resume latencies. Tt = 650ms is not competitive
and Tt = 100ms is only competitive when system
utilization is above 30%.2 As utilization increases,
Tt = 100ms converges to DVFS. However, at Tt =
50ms, PowerNap relative response times are always
faster than that of DVFS, regardless of utilization.

If we could reduce Tt to 10ms, we could further
reduce response times. When utilization is less than
45%, the point at which PowerNap consumes more
power than DVFS, response times for Tt = 10ms are
28% to 44% lower than response times for Tt = 50ms.
Our results indicate that ChromeOS is good candidate
for implementing PowerNap, whereas generic Arch
Linux is not.

These findings motivate further research into op-
timizing server operating systems for fast transi-
tion latencies and specific hardware configurations.
ChromeOS is in fact a version of Linux engineered
for these targets. As blade servers in a datacenter tend
to be identical, from an energy-efficiency perspective
it makes sense to optimize their software stacks for
specific configurations. Server operating systems ex-
ist in many forms, but typically performance takes
precedence over energy efficiency in their design.
Furthermore, since most datacenters never shut down
servers unless absolutely necessary, many servers do
not support sleep states in the first place.

Our work shows that optimizing transition laten-
cies in the operating system can significantly reduce
power consumption and improve response times for
datacenters. This is a first step in studying the impact
of mobile computing design choices, such as fixed
hardware configurations, low-power sleep states, and
fast transition latencies, on server applications.

Many of our conclusions are derived from
software-based optimizations, so even though we col-
lect measurements from mobile hardware instead of
exclusively desktop/server-class hardware, these con-
clusions will generalize regardless of the choice of
hardware. For instance, Chrome OS, a Linux based
system, demonstrates that it is possible to reduce
Linux power state transition latency to 50ms. Even
though it runs on mobile-class hardware, there is
ongoing research in using mobile-class hardware for
servers [8] [9] [13].

VI. CONCLUSION
We present experiments that support the use of

server activation policies in datacenters. On Chrome
OS, we measure sleep and resume latencies of 50ms
each. On a Arch Linux desktop, we observe sleep

2With data from Meisner et al. we extrapolate the 50ms
response time curve reproduced his figures with estimated fits.

and resume latencies of 680 and 650ms, respectively.
Sleeping systems consume merely 4-6% of the power
consumed in an idling but fully powered state.

Using PowerNap, we find that ChromeOS can
substantially reduce power consumption and improve
performance over an equivalent system using DVFS
for dynamic power management, but Arch Linux
transition latencies are too slow to provide any ap-
preciable benefits. These results demonstrate that
server activation policies for datacenter servers are a
promising route towards reducing power with modest
performance impact.
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