SMAUG: End-to-End Full-Stack Simulation Infrastructure
for Deep Learning Workloads

SAM (L|KUN) Xl*, YUAN YAO*, and KSHITI) BHARDWA]J, Harvard University
PAUL WHATMOUGH, Harvard University and Arm ML Research
GU-YEON WEI and DAVID BROOKS, Harvard University

In recent years, there has been tremendous advances in hardware acceleration of deep neural networks.
However, most of the research has focused on optimizing accelerator microarchitecture for higher perfor-
mance and energy efficiency on a per-layer basis. We find that for overall single-batch inference latency, the
accelerator may only make up 25-40%, with the rest spent on data movement and in the deep learning soft-
ware framework. Thus far, it has been very difficult to study end-to-end DNN performance during early stage
design (before RTL is available), because there are no existing DNN frameworks that support end-to-end sim-
ulation with easy custom hardware accelerator integration. To address this gap in research infrastructure, we
present SMAUG, the first DNN framework that is purpose-built for simulation of end-to-end deep learning
applications. SMAUG offers researchers a wide range of capabilities for evaluating DNN workloads, from
diverse network topologies to easy accelerator modeling and SoC integration. To demonstrate the power and
value of SMAUG, we present case studies that show how we can optimize overall performance and energy
efficiency for up to 1.8X-5x% speedup over a baseline system, without changing any part of the accelera-
tor microarchitecture, as well as show how SMAUG can tune an SoC for a camera-powered deep learning
pipeline.
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1 INTRODUCTION

The tremendous popularity of deep learning (DL) in recent years has been fueled by the increased
capability of DL hardware and software systems. In particular, for both performance and energy
efficiency, dedicated hardware accelerators for deep neural networks (DNNs) have received a phe-
nomenal amount of interest [4, 10, 11, 15, 28, 29, 37]. Much of the focus on DNN accelerator design
has been on optimizing core datapaths and dataflows to improve local reuse of data and reduce
expensive data movement between the processing elements, local storage, and DRAM on a per-
layer basis. However, at the end of the day, end-to-end performance is what truly matters, and
additional overheads must be considered, such as data layout transformations that shuffle and re-
shape the data, the choice of accelerator interfacing with the SoC, which affects data movement
efficiency, management of multiple independently programmed accelerators, and contention for
shared system resources like memory bandwidth between different agents on the SoC.

As amotivating example of why overall performance is important, we profile end-to-end single-
batch inference latency on a range of image classification DNNs. In this article, we define “end-
to-end” as starting from the CPU receiving the inference request to when the result is computed.
We break down the overall time spent on accelerator compute, data transfer to/from scratchpads,
and CPU time spent in the software stack, on a system with one DNN accelerator connected over
DMA. In this article, we define the term “accelerator” to refer to any independently programmable
hardware block specialized for a few particular operations. Figure 1 shows that out of the entire
execution time, only ~25% on average is spent waiting on accelerator compute, with the rest of
the time taken up by data transfer (34%) and CPU processing (42%), performing tasks like data
layout transformations, tiling, and more. This is particularly the case on a network like ResNet50
because of the many expensive tiling operations between each of the 50 layers. In some respects,
this breakdown is not surprising, because the performance speedups offered by DNN accelerators
can easily make software the primary bottleneck of overall latency. Nonetheless, this analysis
shows several opportunities for optimization that would not have been revealed by a layer-by-
layer analysis, which this article will explore in more depth. The impact of software stack time on
overall performance has also been observed on industry-grade deep learning models written in
TensorFlow [68] and Caffe2 [47].

Consequently, to holistically design DNN-centric SoCs, we must be able to study end-to-end
behavior in simulation, as simulation is the usual methodology to evaluate early-stage/pre-RTL
hardware designs. However, as shown in Table 1, there is no DNN framework available that sup-
ports fast, early-stage design exploration in simulation. Productivity-oriented frameworks like
TensorFlow or PyTorch do not support simulation at all, and the ones that do support end-to-
end simulation all require RTL/HLS for custom hardware accelerator integration, which is slow to
write/generate and slow to simulate as well.

To address this gap in research infrastructure, we describe SMAUG: Simulating Machine Learn-
ing Applications Using gem5-Aladdin. It is the first architecture-simulation friendly deep learning
framework that can run inside a user-level simulator. We chose compatibility with gem5-Aladdin
[60], because it is built on the familiar gem5 simulator, supports flexible SoC, accelerator, and
memory topologies, and also does not require RTL for design space exploration of accelerators,
all of which greatly simplify the research and development process. SMAUG is designed to enable
DNN researchers to rapidly evaluate different accelerator and SoC designs and perform hardware-
software co-design, not to replace existing frameworks. SMAUG currently is targeted at DNN
inference, but we plan to incorporate support for training as well.

SMAUG'’s headline features include a Python API for easy network configuration, support for
a wide range of commonly used operators and network topologies, various hardware acceler-
ator implementations of core kernels with easy plug-and-play of new custom operators, and a
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Fig. 1. Overall inference latency on a range of DNNs is bottlenecked by data transfer and CPU processing,
because accelerators are already so well optimized. Evaluated on SMAUG (see Section 3 for baseline SoC.)

Table 1. Deep Learning Research Infrastructure

End-to-End Simulation Support Easy Custom Backend | Simulation
Evaluation PP Integration Speed
TensorFlow [1],
PyTorch [31],
Caffe/Caffe2 [27), v X x N/A
MXNet [8]
DNNWeaver [61], X
. 4 . .
DNNBuilder [77], X . . (requires RTL/HLS or Varies
MAGNet [65] (accelerator TLM/RTL simulation only) detailed timing models)
v X
TVM/VTA [9] 4 (behavioral simulation for template (requires RTL/HLS) Fast
accelerator) q
SCALE-Sim [56], X v X Fast
HSIM-DNN [62] (accelerator analytical model) (backend specific)
. X
Timeloop [45], . . 4
X (analytical models for evaluating . N/A
MAESTRO [26] dataflows/tiling) (high-level templates)
vv v
SMAUG v (flexible accelerator and SoC modeling) (no RTL required) Fast

complete software stack that manages operator tiling, multi-accelerator and multi-thread sched-
uling, synchronization, and more. In addition, SMAUG solves several key problems of building
architecture-simulation friendly deep learning frameworks:

(1) New accelerators are easy to implement in SMAUG’s modular architecture. They can be
implemented in just a few lines of code with Aladdin, or as a native gem5 object for more
control over cycle-level timing.

(2)

Running a complete forward pass through a DNN may require billions of operations, but

for many core kernels, most of that work looks the same. SMAUG supports sampling of
accelerator simulation with error as low as 1% for even the most aggressive sampling

factors.

(3)

Workarounds are provided for various simulator limitations to make up for the lack of
complete OS feature support, such as a thread scheduler.
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To illustrate the capabilities of SMAUG and the kinds of insights that only end-to-end DNN
studies can provide, we present several case studies demonstrating how to improve overall
performance of various DNNs by 45-79% (1.85X-5X speedup) over a baseline system without any
changes to the accelerator microarchitecture itself:

(1) Using different SoC-accelerator interfaces to achieve tighter coupling between the CPU
and accelerators for 17-55% overall speedup and up to 56% energy wins.

(2) Using multiple independent accelerators to exploit tile-level parallelism in DNNs for 24—
62% overall speedup with eight accelerators over a single accelerator system.

(3) Using multithreading in the software stack to optimize data preparation time for up to
37% overall speedup.

Finally, we demonstrate how SMAUG can be integrated with a state-of-the-art camera pipeline,
implemented in Halide, to model even more complex applications and identify opportunities for
more efficient system design.

2 SMAUG FRAMEWORK

Figure 2 illustrates the overall architecture and execution flow of SMAUG. It is divided into three
major components: a Python frontend for network configuration, a C++ runtime to manage the
execution flow, and a backend consisting of a set of hardware-accelerated kernels. The accelerated
kernels can be modeled either using Aladdin or as a native gem5 simulation object, depending on
the user’s desired level of flexibility and control. Ultimately, it compiles to a single binary that is
run inside the simulator.

Users begin by building a network using a declarative Python API, complete with all input and
weights data (which can optionally be taken from an existing trained model). They also specify in
the configuration which set of accelerated kernels they want to use, the level of data quantization,
and other metadata. The complete network specification is then converted into a dataflow graph
and serialized (along with network parameters). This is a one-time operation for each network,
so it is done as a separate step. The serialized model is loaded into the C++ runtime, and SMAUG
begins a set of offline preprocessing steps. For example, certain read-only tensors (weights data)
are pre-tiled (split into smaller contiguous tensors) during this preprocessing step to reduce time
on the critical path. This preprocessing can also be fast forwarded in simulation to save time. Next,
SMAUG invokes a tiling optimizer to compute the best available tiling shapes for each operation, so
that the tiles utilize as much of the accelerator compute and memory resources as possible. Finally,
SMAUG dispatches each tile of work to the appropriate processing elements, waits for them to
finish, gathers all the results, and prepares for the next operation. If multiple independent PEs are
available, then SMAUG can schedule all of them at once. Since the internal representation of the
network is a graph, arbitrarily complex networks can be defined and scheduled; the architecture
is not limited to linearly stacked layers. Multithreading support is available to parallelize CPU
operations when possible and better utilize available shared resources like memory bandwidth.

As its name implies, SMAUG is compatible with the LLVM-based toolchains required by the Al-
addin accelerator simulator and the gem5 APIs it exposes [60]. We have made extensive improve-
ments to these toolchains to support compiling C++ binaries, tracing multi-threaded workloads,
supporting sampling, and more. In the following sections, we will describe the frontend Python
API, core runtime, hardware backend modeling and simulation workarounds in more detail.

2.1 Python API

Many deep learning frameworks use Python APIs to build models, and we wanted to follow
in this same tradition to lessen the learning curve, rather than forcing users to manually write
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Fig. 2. Overview of SMAUG’s execution flow.

configuration files or learn a new DSL. We wrote a new simple Python API instead of piggy-
backing on existing Python frontends of Tensorflow/PyTorch, because they have entirely different
design objectives and we did not want to mislead users into thinking that they could simulate the
full range of TF/PyTorch functionality. Figure 3 shows how a residual unit might be built.

This small example demonstrates the simplicity and familiarity of building networks in SMAUG.
They are specified in a deferred execution style, and by using with-statement context managers, we
can greatly reduce boilerplate without adding global state. All input tensors must be constructed
inside the context before being used in an operator. Finally, the user can either supply random
data or existing trained parameters as well as the data type (e.g., float16 or float32). Certain
optimizations like operator fusion (e.g., convolution + element-wise operators) are applied auto-
matically by the framework. Finally, the user serializes the model specification and parameters;
parameters are stored separately so that they can be easily swapped.
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def create_residual_unit():
with Graph(name="residual", backend="MyBackend") as g:
# Tensor initialization.
inputs = Tensor(np.random.rand(1, 8, 32, 32)))
filter® = Tensor(np.random.rand(64, 3, 3, 3)))
filter1l = Tensor(np.random.rand(8, 64, 3, 3)))
# If quantitization is desired:
# filtero = filter@.astype(np.floatl16)
# Network topology:
act = input_data("input", input_tensor)
x = convolution("conv@", act, filtero,
stride=[1, 1], padding="same", activation="relu")
x = convolution("convl", x, filterl,
stride=[1, 1], padding="same"
out = add("add", x, act, activation="relu") # residual
return g

graph = create_residual_unit()
graph.write_graph() # Graph serialization.

Fig. 3. Constructing an operation in SMAUG uses a familiar Python style.

buffer input[IN_RI[IN_CI[IN_H];
buffer weights[NUM_PES][WGT_RI[WGT_CILIN_H];
buffer output[NUM_PES][OUT_RI[OUT_C];
parallel for (pe = @ to NUM_PES)
for (kr = 0 to WGT_R - 1) // kernel row
for (kc = 0 to WGT_C - 1) // kernel col
for (cb = @ to IN_H/32 - 1) { // channel block
// Each PE has its own weight reg
buffer wgt_reg[0:31] = weights[pellkrllkc][ch:cb+31];.
// Now iterate over the input rows and cols.
for (r = @ to OUT_R - 1)
for (c = @ to OUT_C - 1)
parallel for (h = 0 to 31) {
// 32-way spatial reduction in channel dimension.
output[rlfcllpel] += inputl[r+kr]Lctkc][cb*32+h] * wgt_reglhl;
3
3

Fig. 4. Dataflow implemented by NVDLA. Apart from syntax, this is nearly the actual C code in SMAUG.

2.2 Tiling Optimizer

Due to the limited amount of local storage on an accelerator, individual layers of DNNs often
have too many weights and/or inputs to run at once, thus requiring the operation to be tiled.
Whenever tiling is required, redundant data movement is likely necessary, so identifying efficient
tiling schedules (also called “loop nests”) that maximize data reuse and minimize data movement
between levels of the memory hierarchy is critical to achieving high performance. This has been
studied extensively in the field; however, the general problem of finding the optimal solution is
combinatorial in dimensionality and tiling factors, and beyond the scope of this work. In SMAUG,
rather than trying to solve this general problem, we implement specialized tiling optimizers for
every operator (convolution, matrix multiply, pooling, etc.). This section’s discussion focuses on
convolutions, but the takeaways apply to all supported operators.

As an example, consider the dataflow of the Nvidia Deep Learning Accelerator (NVDLA)’s con-
volution engine, which we use in our experiments (see Section 3 for details). As described in
Figure 4, this convolution dataflow, reduces partial products in the channel dimension, so it ben-
efits from a tiling schedule that maximizes the channel dimension of the input and weight tiles.
But such a schedule is not suitable for an accelerator that computes one-dimensional (1D) or 2D
convolutions, like the row-stationary dataflow [10]. By specializing the optimizer for a specific
dataflow, we restrict the search space to a narrower set of possibilities that can be exhaustively
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explored. The final schedule is one that maximizes both the utilization of the local scratchpads and
the functional units.

The first major step of the tiling optimizer is to identify a tiling strategy, i.e., the best dimensions
along which to tile the input and output tensors. This depends on three parameters:

(1) The input tensor shape (e.g., N = H * W % C).

(2) The minimum tile shape. This is the smallest tile shape that can do useful work and is
determined by sensible heuristics. For example, if a convolution uses 3x3 kernels, then
it does not make sense to have tiles smaller than 3x3. Similarly, if the data are stored in
chunks of 8, then breaking these chunks up makes no sense either.

(3) The maximum tile size, determined by the capacity of the accelerator’s local memory.

Given these parameters, the tiling strategy is determined by a preference order on tiling dimen-
sions. As an example, the NVDLA preference order looks like this:

(1) If the entire tensor fits (less than the max tile size), then no tiling is needed.

(2) If the minimum batch size fits (using the min tile size’s batch size), then tile by batches
only.

(3) If we can partition the tensor both batchwise and channelwise to make a tile fit, then tile
by batches and channels.

(4) If we can partition the tensor batch-size and row-wise to make a tile fit, then tile by batches
and rows (but not channels).

(5) This procedure continues until we’ve considered all the possible tiling strategies.

The order of preferences is determined by two factors: the accelerator dataflow and the data
layout of the tensor. The first factor is well understood; the second factor concerns how much
work is required to shuffle and reshape the original input tensor into the required tile shapes and
only arises when evaluating end-to-end performance.

As an example, Figure 5(a) shows how one NHWC tensor, when tiled in two different ways,
produces two very different memcpy patterns. We describe a tiling strategy with the notation
DimXYZ, where X, Y, and Z are the tiled dimensions. For this tensor, channels are the innermost
dimension, so it is the most expensive to tile. To quantify this difference, we show in Figure 5(b)
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how long it takes to tile two different tensors two different ways for a max tile size of 16,384
elements. The medium-sized tensor (1X16 X 16x128) can be tiled channelwise (1X16 X 16x64) or
row-wise (1x8 X 16x128) but row-wise is 1.78X faster in software, because it only requires two
large memcpys of 8x16x128 = 16 K contiguous elements, whereas for channelwise tiling requires
512 memcpys of 64 elements. This effect is even more pronounced on the larger layer, where we
can use either DimCH (1x32 X 64x8) or DIimHW (1x1 X 32x512). DimHW tiling is 6.5X faster
to complete, because it only requires 128 memcpys of 16K elements to completely tile the input,
compared to 262K memcpys of 8 elements. The effect of a different tiling strategy on the overall
operation is harder to predict (but can be estimated with analytical models like Timeloop [45] or
MAESTRO [26]). For element-wise operations, tiling strategy has next to no effect; for operations
whose performance depends on exploiting data reuse, changing tiling shape may impact overall
runtime. This is one of the new tradeoffs SMAUG enables researchers to explore.

The second major step of the tiling optimizer is to compute the best tile shapes, given the tiling
strategy and max tile size. In SMAUG, this is done in two substeps. First, we generate a compre-
hensive set of compatible tile shapes for the tiling strategy and pick the one that maximizes local
memory utilization. Note that not all combinations make sense. For example, if a candidate input
tile has 16 channels, then the corresponding weight tile must also have at least 16 channels. We also
want to avoid unnecessary data transfers: If the accelerator operates on vectors of 8 elements, then
only produce tiles in multiples of 8. The chosen tile shape is the basic tile shape. The second substep
is to iteratively partition each input tensor into tiles. Due to corner cases like zero-padding, halo
regions, overlapping regions around each tile, non-unit strides, and more, not all input tiles will
actually use the exact basic tile shape—they often vary by a few rows or columns. Non-uniform
input tile shapes produce non-uniform output tiles, further complicating this procedure.

For a new accelerator, a new tiling strategy can be generated simply by changing the tiling strat-
egy parameters and preference order (and also possibly by eliminating certain strategies that no
longer make sense). For example, a pointwise convolution will prefer to tile by rows or columns be-
fore channels, since tiling by channels will require storing partial sums for further reduction later
(more data movement and more arithmetic). The new accelerator can reuse the code to search
for the best tiling shape, since we provide a library of tiling functions to facilitate writing new
tiling optimizers. Aladdin supports modeling accelerators containing a variety of complex hard-
ware constructs, since not all accelerators will be as simple as writing a new loop nest. But from
SMAUG's perspective, all accelerators export a common interface: a dataflow, minimum tile shape,
and max tile size, which are sufficient to determine how to tile a layer for it.

2.3 Runtime Scheduler

Once the tiling shapes have been generated for each operator’s tensors, the scheduler prepares the
tensor for computation by splitting it into the specified tile shapes. This has to wait until runtime,
when the actual input data from the previous operator is ready. Then, the scheduler dispatches each
tile to the appropriate compute element. If there are multiple compute elements and tile-level par-
allelism exists, then SMAUG can dispatch independent work to multiple compute elements at once.
To help distribute work across multiple accelerators, SMAUG implements an accelerator worker
pool and a command queue per accelerator. Tasks are pushed onto the command queue for the next
available accelerator in the pool. Any operators that are not supported in the backend hardware
accelerators are executed on the CPU instead. As the work completes, the scheduler gathers the
tiled output data back into one contiguous tensor. Since the gem5-Aladdin API exposes an accel-
erator like a thread, managing multiple accelerators concurrently running is as straightforward as
starting and joining on threads. SMAUG also supports dividing CPU work across multiple threads,
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but since gem5’s syscall-emulation mode does not have a thread scheduler, SMAUG implements a
thread pool with round-robin scheduling of tasks from a work queue.

2.4 Backends

The backends run the convolutions, inner products, and so on, required by the model. In SMAUG,
we provide a complete set of hardware accelerated kernels for all the included operators. These
models can be written using Aladdin or as a native gem5 object, depending on the user’s desired
level of flexibility and control. We provide examples of both, most notably a convolution engine
inspired by NVDLA, written with Aladdin, and a configurable systolic array, written as a native
cycle-level gem5 object. For all other supported operators, we implement models in Aladdin. All
accelerator models were validated against RTL implementations to be within 10% for total cycles.

The NVDLA-inspired convolution engine consists of eight PEs, each with a 32-way multiply-
accumulate (MACC) array that operates on a different output feature map. The dataflow is de-
scribed in Figure 4. Inputs and weights are 16-bit fixed point, while outputs are accumulated in
32-bit fixed point and reduced to 16-bit before being written to the scratchpad. In the emerging
vernacular used to describe DNN dataflows, this dataflow is L0 weight-stationary (weights are
reused every cycle at the register level within a MACC array), and L1 input/output stationary (for
every weight, inputs are re-read and outputs are accumulated in-place in the SRAMs). It is backed
by three SRAMs, one each for inputs, weights, and outputs. We only model the core datapath and
dataflow of NVDLA, not other features like its convolution buffer.

The systolic array’s dataflow is output stationary: Inputs stream through from the left, while
weights stream from the top. There are three scratchpads, accessed from fetch and commit units,
to supply the PEs with data. The dataflow was inspired by SCALE-Sim [56], but SCALE-Sim is
primarily an analytical model that can generate SRAM and memory traces to feed to other tools
like DRAMSim, whereas our model is entirely execution-driven and produces live memory traffic
that affects (and is affected by) the rest of the system.

One of the key design features of SMAUG is how easy it is to implement a new HW accelera-
tor model and integrate into the framework. The user simply needs to override a base Operator
class to specify the operator parameters, implement an accelerator model, and invoke it from the
Operator: :run method. The user can reuse an existing tiling optimizer or build a new one if they
desire, using a provided library of tiling functions we provide. Finally, a small additional amount
of registration code link together the C++ and the Python sides. Implementing a new accelerator
model is particularly easy if the user chooses to use Aladdin for modeling. For example, apart from
syntax and variable declarations, Figure 4 is very similar to the code that models the convolution
engine. In fact, merely 5% of the code is used to model all the hardware blocks with Aladdin. If
users do choose to write cycle-level timing models using native gem5 APIs, then more code is
needed (the systolic array model accounts for ~10% of the SMAUG codebase). The remaining 85%
is devoted to computing tiling schedules, memory management, data movement, cache coherency,
and task scheduling. Therefore, SMAUG eases the development of not only new hardware models
but also studies of end-to-end system interactions, enabling researchers to spend their time on the
topics that interest them the most.

2.5 Working with Simulator Limitations

We chose to use user-level simulators (like gem5 syscall-emulation mode) rather than full system
simulators, because the latter requires new device drivers for their accelerators, which would likely
deter many users. But to simulate end-to-end networks in user-level simulators, there are three
constraints that must be addressed: reducing simulation time with sampling, handling incomplete

ACM Transactions on Architecture and Code Optimization, Vol. 17, No. 4, Article 39. Publication date: November 2020.



39:10 S. Xi et al.

int reduction(int* a, int size, int sample) {
// dmalLoad is placed outside the sampled loop, so that we don't
// change the memory footprint of the application.
dmalLoad(a, size * sizeof(int));
int result = 0;
setSamplingFactor("loop", (float)size / sample);
loop:
// Run only ‘sample‘ iterations of this loop; the result will be wrong,
// but that's expected for sampling.
for (int i = 0; i < sample; i++)
result += al[il;
return result;

3
Fig. 6. An example of specifying sampling factors on loops in Aladdin.

g . 0

S-Conv  M-Conv  L-Conv BN Pool FC Gmean

Fig. 7. Sampling performance validation. S-Conv uses 16 1x1x8 kernels; M-Conv uses 64 2x2x16 kernels;
L-Conv uses 256 3x3x64 kernels.

system call emulation, and supporting multi-threading without a thread scheduler (typically im-
plemented in the kernel).

2.5.1 Sampling Support. Modern DNNs are very deep and compute intensive, often requir-
ing billions of operations, and because Aladdin is a trace-based simulator, it may be infeasible to
store and simulate a complete forward pass. However, since DNN computation is so regular, a
sampling approach works well. We built sampling support into Aladdin with a new API called
setSamplingFactor, in which the user specifies how many iterations of a particular loop to trace
and simulate. Figure 6 demonstrates the API at work. During Aladdin’s graph optimization pro-
cess, we build a loop tree that captures the hierarchy of loop iterations. When the simulation is
over, Aladdin examines each node in the loop tree, unsamples the latency of simulated iterations,
and propagates the sampled execution time up the tree. After every loop is unsampled, Aladdin
produces a final overall cycles estimate. This API supports pipelined loops as well, although at
least two loop iterations are required to determine the pipeline latency. As a result, we can simu-
late a forward pass of ResNet50 in just 5 hours. We validated our sampling technique for a range
of operators and input shapes, all at the highest sampling factors (so that the sampled loops only
run one or two iterations). Figure 7 shows that sampled execution has less than 6% error across
different kernel types, with an average of just 1%. Finally, note that sampled simulation will obvi-
ously produce incorrect functional results, since not all the code is being executed, so this is only
suitable for loops whose control flow is not data dependent.

2.5.2  System Call Emulation. User-space simulators often do not implement the full range of
OS features that we come to take for granted. For example, the mmap syscall can map the con-
tents of a file into memory (among other use cases), so it can be manipulated directly via loads
and stores rather than through the IO subsystem, but in gem5 syscall-emulation mode, stores to
mmapped memory are not synchronized to the backing file. SMAUG was written to work within
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Fig. 8. The SoC platform used in this article’s experiments.

all of these limitations; it compiles into a single C++ binary, never forks other processes, and in-
teracts minimally with the OS, essentially only requiring the ability to access a filesystem, call
printf, and start new threads that never exit. The drawback of syscall emulation is that we can-
not fully capture effects like device offload and context switch latency, but compared to its benefits
(faster simulation and user-friendliness of not having to write device drivers), we believe it is a
worthwhile tradeoft.

2.5.3 Multithreading Support. It is common for user-level simulators to not implement pre-
emptive thread schedulers, as thread scheduling is a kernel task. gem5 syscall emulation mode has
limited support for multi-threading, with limitations on how thread contexts can be reused after
a thread exits. To enable multi-threading in SMAUG, we implemented a custom thread pool and
expose an API to dispatch work to it. Each task is executed to completion before yielding the CPU.
Furthermore, to prevent idle threads from spinning endlessly in simulation and generating useless
work that slows down the simulation, we use gem5 hooks to quiesce CPUs while they are waiting
for work and wake them only when we assign them tasks.

3 METHODOLOGY

Now that we have described SMAUG, we will demonstrate how it can be used to provide insights
into accelerated DNN performance that per-layer studies would not be able to show. First, we
discuss our evaluation methodology.

3.1 Baseline System

Figure 8 shows the baseline SoC used in this article, with microarchitectural parameters listed in
Table 2. In gem5-Aladdin, we use syscall-emulation mode with Ruby to model a MESI coherency
protocol. The CPU communicates with the accelerator either via the ioctl system call or via
shared memory. The baseline SoC transfers data over DMA and runs a single-threaded software
stack. In Section 4 (also Figure 1), we run the convolutions and inner products on the NVDLA-
inspired accelerator; in Section 5, we use the systolic array instead for diversity.
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Table 2. SoC Microarchitectural Parameters

Component Parameters

CPU Core | 8 Out-of-order X86 cores @2.5GHz 8-pop issue width, 192-entry ROB
64-KB i-cache & d-cache, four-way associative, 32-B cacheline, LRU,
2-cycle access latency

L2 Cache 2MB, 16-way, LRU, MESI coherence, 20-cycle access latency

DRAM LP-DDR4, @16,00MHz, 4 GB, four channels, 25.6 GB/s

NVDLA conv engine and others, systolic array (8x8 PEs), 1GHz All
scratchpads are 32 KB each

L1 Cache

Accels

(92}

IN

Simulation time (hrs)
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Fig. 9. With sampling, even large networks can be simulated in hours.

3.2 Workloads

With the flexible Python client and the complete SW/HW stack in SMAUG, we are able to evaluate
a variety of DNN workloads. Here we investigate four image classification tasks: MNIST, CIFAR10,
CIFAR100 and ImageNet. For the first three datasets, we select two different networks each. For
ImageNet, we use ResNet50 [24] (included in the emerging MLPerf Inference Benchmark [54]).
Table 3 summarizes the networks used. The goal was to cover a diverse set of network topologies
that still map well to the accelerator’s dataflow, which is optimized for convolution shapes deep
in input/output feature maps. SMAUG implements a wide range of operators beyond these basic
kernels (e.g., RNNs, LSTMs, attention layers, and more); we focus on image classification workloads
in this article for brevity.

3.3 Simulation Time

Figure 9 shows the simulation time for running the workloads using the NVDLA backend in
SMAUG on an Intel Xeon E5-2697 host (@2.6 GHz). For most of the networks, SMAUG simu-
lations finish within 2 hours. The smaller MNIST workloads take less than 10 minutes, and with
sampling, even the large ResNet50 network finishes in ~5 hours.

3.4 Power and Area Modeling

To obtain power and area estimates, we take a multi-pronged approach. We characterize various
16-bit functional units for power and area in a commercial 16nm FinFET process and plug them
directly into Aladdin. To model accelerator local scratchpads, we characterize a variety of SRAM
blocks using a commercial memory compiler in the same technology node. LLC power estimates
are obtained from CACTI 7 [42], and DRAM power is modeled by DRAMPower [30], with timing
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Table 3. Datasets and Networks Used in This Paper

Name | Dataset | Network Topology | Parameters | Accuracy | LOC
Minerva [53] (21;{1(\;1;;1) 4 FC [784, 256, 256, 10]. 665 KB 97% 20
MNIST | 5 layer CNN (3x3) 2 CONV [32,
LeNets [75] | 95x28x1) | 32], POOL, FC [128, 10]. 12 MB 98% 24
CIFAR-10 10 layer CNN (3x3) 4 CONV [32,
CNN10 32, 64, 64], 2 BN, 2 POOL, 2 FC 4.2 MB 85% 38
(32x32x%3) (512, 10]
16 layer CNN (3x3). 2 CONV
ClEAR.1o | [6% 128], POOL, 2 CONV [125,
VGG16 [57) (3232x3) 128], POOL, 3 CONV [256, 256, 17.4 MB 90% 56
256], POOL, 3 CONV [512, 512,
512], POOL, 2 FC: [512, 10].
16 layer CNN. 1 CONV [192],
POOL, 2 CONV [192, 240],
POOL, 2 CONV [240, 260],
ELU16 [16] | CEARI00 | 001" 5 CONV [260, 280], 3.3 MB 71.25% 66
(32x32X3) | bOOL, 2 CONV [280. 300].
POOL, 2 CONV [300, 100].
Mostly 1x1 & 2x2 CONV.
24 layer CNN. CONV [384],
POOL, 4 CONV [384, 384, 640,
640], POOL, 4 CONV [640, 768,
CIFAR-100 | 768, 768], POOL, 3 CONV [768,
ELU24 [16] | (35532%3) | 896, 896]. POOL, 3 CONV [896, 75 MB 77.72% 114
1024, 1024], POOL, 4 CONV
[1024, 1152, 1152, 100]. Mostly
1x1 & 2x2 CONV.
50 layer CNN. 1 CONV [64], 3
stacks of 3 CONV [64, 64, 256], 4
stacks of 3 CONV [128, 128,
Resflz\{f]tso (2121%622122) 512], 6 stacks of 3 CONV [256, 237 MB 76.46% 216
256, 1024], 3 stacks of 3 CONV
[512, 512, 2048], 1 FC [1000].
1x1 & 3x3 CONV.

All parameters are stored as 16-bit fixed-point.

and power parameters taken from a commercial LP-DDR4 product datasheet [40]. We note that
Accelergy [72] could also have been used for energy estimation, although it would not model area.

4 OPTIMIZING END-TO-END PERFORMANCE OF DNN WORKLOADS

SMAUG enables a wide range of architecture simulation tasks, from diverse DNN topologies to
accelerator implementations, from the SoC integration of accelerators to evaluation of multi-
accelerator systems. To illustrate the insights that SMAUG can bring to DL hardware architects,
in this section we demonstrate several ways to improve end-to-end DNN performance on an SoC,
all without changing the underlying accelerator themselves.

In these case studies, the baseline system uses one NVDLA accelerator with the DMA interface,
running on a single-threaded software stack. Figure 1 has shown that not only the accelerator
compute, but also data movement and CPU processing spent on “between-the-layer” work are
crucial to end-to-end DNN performance. Therefore, in the rest of this section, we present three
case studies that attack all these components of performance. First, we optimize data transfers
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by using a one-way coherent interface between the accelerator and CPU LLC instead of DMA.
Second, we explore multi-accelerator systems to exploit tile-level parallelism for greater compute
and data-transfer throughput. Third, we optimize tiling transformations in software to reduce CPU
processing time. As a whole, these optimizations speed up overall inference latency by 1.8x-5x%.

4.1 Improving Data Transfer: Coherent Accelerator-SoC Interfaces

Fixed-function accelerators typically use private scratchpads for local storage and communicate
with the memory system of the SoC through a DMA interface. DMA is the simplest approach to
sharing data from a hardware point-of-view, but its implementation on many system architectures
(e.g., ARM) requires software to be responsible for explicitly flushing and invalidating cache lines
that the accelerator is going to read and/or write, resulting in both costly performance overheads
and a challenging programming model where developers must manage complex coherency opera-
tions. This has driven researchers to investigate alternative interfaces, such as hardware-managed
caches [2, 3, 33, 43, 44]. While cache coherency for programmable accelerators like GPUs have
been extensively studied [5, 23, 49-51, 64], only in recent years have academia and industry started
investigating use of caches for fixed-function accelerators and FPGAs. Full cache coherency rep-
resents the ideal programming model, but the hardware is more expensive and generally requires
the accelerator to maintain a cache, which may not actually suit the accelerated kernel.

In this case study, we explore a recent interface design that occupies a middle ground between
SW-managed and fully hardware-managed coherency. Here, the interface provides one-way co-
herent access from the accelerator to the host memory system. This interface takes the form of
a special port, referred to as an accelerator coherency port (ACP), that issues coherent memory
requests directly to the CPU’s last level cache (LLC). The LLC handles all coherency traffic on
the accelerator’s behalf, enabling the accelerator to access coherent memory without adding more
area and complexity [70]. To model such an interface, we augment a standard MESI cache coher-
ence protocol using the Ruby modeling framework with a custom controller. This controller is
connected to an accelerator’s memory interface and generates requests to the LLC on behalf of
the accelerator. Unlike a standard cache controller, it does not implement a cache and leaves own-
ership of the relevant cache lines with the LLC rather than the accelerator itself. Using Verilog
simulation of an ARM Cortex A53 CPU, we measure ACP hit latency to be 20 cycles, which we set
as the LLC latency.

Figure 10 shows the performance and energy of the ACP interface, relative to the baseline DMA.
By attaching the DNN accelerator over ACP, DNN performance improves by 17-55% and energy
consumption drops by up to 56%. This is attributed to two effects. First, as a coherent interface,
ACP eliminates the software coherency management overhead associated with using DMA for
data transfers, which prior work [60] has shown to be a significant fraction of overall data transfer
time. This accounts for the majority of the speedup on data transfers. Second, when using this
coherent interface, many expensive DRAM accesses are converted into cheaper LLC hits, which
reduces overall energy consumption by around 20% on average, as shown in Figure 10(b). While the
actual improvements vary based on the size of the network and the tiling configurations, all these
performance and energy wins were achieved just by changing the interface, not the accelerator.
As the number of specialized blocks on SoCs increases over time, optimizing interfacing choices
will become increasingly important and challenging. SMAUG enables researchers to study these
challenging system-level architecture choices using full-stack deep learning workloads.

4.2 Improving Accelerator Compute: Multi-Accelerator Systems

DNN workloads have many different levels of parallelism, whether it is in the parallel arithmetic
operations within a tile, across tiles within a single operation, or across independent operations
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Fig. 10. Performance and energy of the ACP interface, compared to DMA.

entirely (like residual branches in ResNet50). In this section, we explore scaling multi-accelerator
systems to better exploit tile-level parallelism. Compared to a single monolithic block, a multi-
accelerator system (e.g., spatial arrays or multi-chip modules) with independently programmable
components can potentially scale to larger designs more easily and be more flexible for different
workloads. We choose to exploit tile-level parallelism for two reasons: First, exploiting parallelism
across arithmetic operations lies at the intersection of finding better tiling shapes for wider, more
efficient accelerator datapaths, and, second, it is a more universal feature of DNNs compared to
inter-operator parallelism (like residual branches).

When multiple accelerators are available, SMAUG places them into an pool of workers. Each
accelerator is controlled directly by the runtime scheduler. When tiling for a layer is finished,
the scheduler pushes tiles of work to the command queue of the assigned accelerator and tracks
the progress of all tiles in flight. New tiles are pushed to the queue once their data dependencies
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Fig. 12. Memory traffic and bandwidth usage of multiple-accelerator systems, averaged over the course of
the entire workload.

are resolved; for example, some tiling configurations need all partial products along the channel
dimension to be reduced before moving on to the next block of rows or columns. However, dividing
work across multiple accelerators is not free, nor does it always improve performance. For example,
if the dataflow is input-stationary and requires each of the N accelerators to share a weight tile,
the weight data must now be broadcast to N destinations instead of just 1.

Figure 11 shows how performance of multi-accelerator systems scales with accelerator count.
As expected, accelerator compute time speedup is consistent with the increase in available pro-
cessing units. It continues until we saturate the available tile-level parallelism, which naturally
occurs earlier for smaller networks than larger ones. Increasing accelerator count also means in-
creasing total DRAM bytes transferred, because some data will need to be broadcast to all PEs, but
as Figure 12(a) shows, this effect is small in the context of the entire workload, with at most a 6%
increase in overall traffic. However, Figure 12(b) shows that multiple accelerators are also able to
make better use of the available memory bandwidth. Overall, data transfer time drops by around
60% on average. Together, with eight accelerators in the system, end-to-end latency improves by
between 20 and 60% over a single-accelerator system. This case study demonstrates how SMAUG
can clearly illuminate the overall performance bottlenecks in DNN performance: By the time we
reach eight accelerators, compute time is negligible compared to data transfer time and software
stack time, and therefore those are the next components to optimize.
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Fig. 13. Accelerator utilization of VGG16 with eight accelerators. C, P, and F stand for layer types of convo-
lution, pooling, and fully connected, respectively.

When debugging bottlenecks in DNN inference, it is useful to inspect per-operation perfor-
mance or performance between two particular operations. With SMAUG, we can generate an
execution timeline of important events for users to visualize. For example, Figure 13 shows the
accelerator utilization for the last 10 layers of VGG16, when the system has eight accelerators in
total. These layers contain the largest six convolutional layers by number of parameters, two pool-
ing layers (2x2), and two fully connected layers (512 and 10 neurons each). The timeline illustrates
several opportunities for further optimization, which we summarize below.

Work balancing for higher accelerator utilization. The timeline shows that layers 8 and 9
are not fully utilizing all the accelerators in the system, because for this accelerator, the runtime
scheduler only supports in-place reduction of partial products along the channel dimension, so
all the tiles whose partial products must be reduced are put onto the same accelerator’s command
queue. Then for this layer shape, there are only five output tiles (i.e., independent streams of work),
so only five accelerators are used. It is possible to evenly distribute work across all workers, which
would require the runtime scheduler to support inter-accelerator reduction. Overall, the runtime
scheduler in SMAUG does a good job in exploiting tile-level parallelism in the DNN, but as is the
case with all software, there is always room to improve.

Accelerating inter-layer tiling operations. The timeline shows that on layer 7, the acceler-
ator finishes computation very quickly, followed by a long period of CPU activity. This is the CPU
performing “data finalization”: gathering all the output tiles from the accelerators and rearranging
them into a single tensor (“untiling” the tensor), because the next layer will likely need different
input tile shapes. Ways to optimize this includes adjusting tiling shapes to maximize regions for
contiguous memcpys (see Figure 5(b)) and distributing the work across multiple CPUs to increase
task-level parallelism and memory bandwidth utilization, which is the subject of the next section.

4.3 Improving Software Stack: Multithreaded Data Management

After all the effort spent optimizing core kernels like matrix-multiply and convolution, the per-
formance bottleneck shifts to the cost of preparing data for use, and since this preparation is typi-
cally part of the software framework, the overhead is exaggerated in comparison to the accelerated
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kernels. This is not specific to SMAUG; on industry-grade recommendation models, data prepa-
ration, other framework native operations, and synchronization can take up anywhere from 10 to
over 70% of inference latency [47, 68]. In this case study, we look at ways to reduce this overhead.

We break down the execution time of the software stack into three parts: data preparation, data
finalization, and other software activities. Data preparation includes layout transformations, in
which the dimensions of a tensor are either rearranged (e.g., NCHW to NHWC) or flattened, and
tensor tiling, which copies non-contiguous logical regions of one tensor into contiguous smaller
tensors that can then be directly transferred to the accelerator for computation. As a result, when
accelerators finish their work, their output tensors are also tiled, which must now be “untiled” to
obtain the final output tensor. We refer to this untiling operation as data finalization. Finally, other
software activities include tasks like control flow management, memory management, various glue
logic, and thread synchronization.

Figure 14 shows that on the baseline system, data preparation and finalization account for 85% of
the software stack time, so there is ample room for improvement. As with the previous section, we
attack this problem through tile-level parallelism. We use SMAUG’s thread pool (see Section 2.5.3)
to distribute data preparation and finalization tasks across multiple threads. Each thread is respon-
sible for copying data to/from a set of tiles. The baseline system has already accounted for the cost
of tiling transformations when determining the best available tiling strategy.

With multithreaded tiling, we can achieve up to 3X-4x speedup on data preparation/finalization
with eight threads, as shown in Figure 15, resulting in an end-to-end latency reduction of up to
37%. This speedup is primarily due to an increase in memory bandwidth utilization when multiple
threads are active. Figure 16 shows the memory bandwidth usage during the data preparation and
gathering phases of the multithreaded software stack. On large networks like ResNet50, which
have a lot of tiles, multiple threads increases bandwidth utilization by 2.7x and leads to a 2.8x
speedup on data preparation and finalization tasks, while smaller networks like Minerva do not
have enough tile-level parallelism for multi-threading to exploit.

4.4 Overall Combined Speedup

Figure 17 summarizes the combined effect of the three case studies on a single forward pass
through all the networks. The SoC uses the ACP interface with eight accelerators and eight
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Fig. 18. Execution trace of the camera vision pipeline running one frame. The vision part runs CNN10. C, B,
P, and F stand for layer types of convolution, batch normalization, pooling, and fully connected, respectively.

software threads. Overall latency drops by between 45% on LeNet5 to as much as 80% on ELU24
(1.8x-5% speedup), all without changing any part of the accelerator microarchitecture. This is a
demonstration of the power of SMAUG applied to system-level performance optimization of DNN
workloads.

5 OPTIMIZING A CAMERA-POWERED DEEP LEARNING PIPELINE

In recent years, it has become increasingly common to attach deep learning models at the end
of other applications. One notable such application uses the camera pipeline with a DNN [22] to
perform real-time tasks such as object classification, detection, segmentation, and labeling. In this
study, we demonstrate how SMAUG can also model this kind of application and enable hardware-
software co-design for better performance and energy efficiency.

The camera pipeline is a long series of spatial linear and non-linear filters and transforms to
convert the image sensor’s raw output into a realistic RGB representation. The sensor itself sits
behind a Bayer color filter, so each photodiode only captures light from one of the primary colors
(RGB). As a result, the output of the sensor is an array of pixel values, each representing the
intensity of a single color. The process that estimates the original color of each pixel from this raw
image is called demosaicing. The subsequent image processing then proceeds through many more
processing steps, like white balance correction, color space conversion, chroma subsampling, and
more. Finally, the image is compressed in a lossy format (e.g., JPEG), which preserves low frequency
details that human eyes are sensitive to while removing the imperceptible high frequencies [18,
22].

To construct such a camera vision pipeline, we integrate the complete camera pipeline imple-
mentation shipped with Halide [52] into SMAUG and simulate it as a single process running on
the CPU. The camera pipeline transforms raw data recorded by camera sensors into usable 720p
images, including several stages: hot pixel suppression, deinterleaving, demosaicing, white balanc-
ing, and sharpening. Modern image sensors use multi-megapixel resolutions, but that resolution
is often not necessary for DNNs; in this study, we feed 720p images through the camera pipeline,
then downsample it to the size required by the DNN. For real-time applications, frame-time is a
more representative metric of responsiveness than throughput, so assuming the application targets
30 FPS throughput, each frame must complete within 33 ms. The baseline system configuration we
use is the same as the earlier case studies, except that to show the accelerator variety in SMAUG,
we use the systolic array model (a cycle-level timing model written as a native gem5 object), con-
figured as an 8x8 PE array instead of the NVDLA-inspired model.
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Figure 18 shows the execution timeline for the camera vision pipeline, using the CNN10 net-
work. With SMAUG, we can produce a trace of memory bandwidth utilization and total memory
energy consumed during the application. In this case, the overall pipeline takes 20.5 ms to finish
(13.2 ms of camera pipeline and 7.3 ms of DNN), and memory energy consumption is well balanced
between the CPU (43%) and accelerator (57%). The slack time (12.8 ms) before the frame deadline
means that in energy or chip area constrained scenarios, we could afford to use an even smaller
systolic array. As shown in Figure 19, reducing the PE array in half (4x8) increases the DNN la-
tency to 11.0 ms, which still meets the frame-time limits. However, further decreasing the PEs to
a 4x4 array results in an overall latency of 34.6 ms, violating the real-time constraint. Most of this
extra latency comes from the final classifier layer.

6 RELATED WORK

Simulation frameworks. SoC-accelerator simulators usually require the user to implement the
accelerators in RTL or using HLS tools [12, 14, 25, 36, 48, 63]. Centrifuge proposes a prototyping
methodology that leverages HLS to generate accelerator SoCs and deploy them to FPGAs [25].
PARADE combines HLS with gem5 for full-system simulation [14]. GemDroid couples gem5 with
the Android Emulator and integrates various hardware IP models to enable SoC-level simulation
[12]. The heavy reliance on RTL implementation significantly increases the algorithm-to-solution
time, even with HLS tools. In contrast, SMAUG builds on top of gem5-Aladdin, which uses a pre-
RTL approach to accurately model the power, performance, and area of accelerator designs.
Table 1 lists recent deep learning research frameworks. Some are end-to-end systems, like Ten-
sorFlow [1] or TVM [9], but they either lack simulation support or require detailed pipeline models
or RTL. Other tools focus on exploring dataflows and efficiently map DNN kernels to FPGAS or
ASICs [45, 61, 65, 72, 76, 77]. These often implement a component library or templated designs for
hardware optimization, but with a heavy focus on optimizing the accelerator, they cannot evalu-
ate networks end-to-end, leaving a lot of design opportunities unexplored. While all of these tools
have their place in the deep learning research infrastructure landscape, SMAUG is the only one
that enables end-to-end early-stage design space exploration of the SoC as well as the accelerator.
Due to the regularity of DNNS, there are simulation tools that apply analytical models for DNN
performance analysis [26, 45, 56, 63]. In general, analytical models have their place in the land-
scape of DNN tools since cycle-level simulation can be slow, but, because they do not actually
simulate the workload, they would not be able to accurately model dynamic effects from multiple
accelerators and multiple CPUs competing for shared resources (on-chip bandwidth, LLC capacity,
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etc.), which is precisely the focus of our case studies. SMAUG also supports regular and irregular
compute (sparsity, compression, etc.), since it uses cycle-level simulation to model performance
and energy; this is often difficult to capture in analytical models.

DNN Accelerator Designs. There has been an incredible amount of interest in DNN hardware
acceleration. Broadly speaking, the architecture community has focused on designing efficient
dataflows to maximize local reuse of data and functional unit utilization [4, 10, 11, 15, 28, 34, 37,
39], explore the space of possible dataflows and mappings [26, 45, 74], exploit model sparsity and
data quantization [17, 21, 29, 38, 46, 53, 71, 73, 78], map DNN accelerators to FPGAs [20, 66, 69],
and explore alternative compute, memory, and packaging technologies [35, 58, 59, 67]. All of these
works are highly relevant to this field. In particular, past work like Timeloop [45], which search the
tiling space for efficient dataflows and mappings, could potentially be integrated into SMAUG’s
tiling optimizer by generating executable code from the high level mapping descriptions. However,
these articles do not address end-to-end performance evaluation, CPU-accelerator interactions, or
between-the-layer operations, like data layout transformations.

SoC-Accelerator Interfacing. Over the years, there have been a few publications investigat-
ing SoC-accelerator interfacing and interactions in a variety of contexts, such as CoRAMs [13],
pLayer [32], and Google mobile system workloads [6]. A few recent works have considered inter-
facing between the SoC and accelerators [7, 19, 79]. A handful of other works have used the ARM
accelerator coherency port for tighter coupling between CPU and accelerators, albeit not in the
context of DNNs [41, 55].

7 CONCLUSION

This article demonstrates the critical importance of evaluating full-stack performance of a hard-
ware accelerated computing task like neural network inference. Recent years have brought great
advances in accelerator design and efficient DNN dataflows, but several important components of
overall performance, like data transformation and movement cost and software framework over-
heads, have received far less attention, partly because of a lack of suitable research infrastructure.
We developed SMAUG, a DNN framework that can be simulated in a cycle-level SoC simulator, and
demonstrate how it can be used to optimize end-to-end performance on a wide range of DNNs to
achieve between 1.8X and 5% speedup by optimizing SoC-accelerator interfaces, exploiting multi-
accelerator systems, and optimizing the software stack. Since SMAUG provides architects with a
straightforward approach to simulate complex full-stack workloads, we hope it will spur renewed
interest in broader optimization of end-to-end performance in DNN hardware studies. SMAUG is
available at www.github.com/harvard-acc/smaug.
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